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Preface 

The International Conference on Control and Estimation of Distributed Parameter 
Systems took place from July 14-20,1996, at the Bildungshaus Chorherrenstift Vorau 
in Vorau (Austria). It was the seventh in a series of conferences that begun in 1982. 
51 researchers from 11 states contributed to draw a broad and diverse picture of 
the recent developments in optimal control and parameter identification of partial 
differential equations, both from a theoretical and numerical viewpoint. We thank 
them all for their contributions to an enjoyable and interesting conference. 

We address our thanks to the whole staff of the Bildungshaus Chorherrenstift 
Vorau. The pleasant atmosphere at the Bildungshaus has been a key ingredient to 
the success of the meeting and the stimulating interaction between the participants. 
We are particularly indebted to Mrs. L. Reiß, who helped us omnipresently with all 
the everyday issues of a conference like this one. 

This meeting was facilitated by funding from the following organizations: 

Amt der Steiermärkischen Landesregierung, 
Bundesministerium für Wissenschaft und Verkehr, 
Christian Doppier Laboratorium für Parameter Identifikation 
und Inverse Probleme, 
European Research Office of the U.S. Army, 
Spezialforschungsbereich F003 "Optimierung und Kontrolle", 
Stadt Graz, 
U.S. Air Force European Office of Aerospace Research and Development. 

It is our pleasure to acknowledge the generous support by these institutions. 

Once again, the friendly and supportive team of Birkhäuser, in particular 
Dr. T. Hintermann and Mrs. S. Lotrovsky, have provided an optimal opportunity 
to publish our proceedings. Our special thanks go to Mrs. G. Krois. Her enthusiasm, 
skill and workpower have been the backbone of the organization of the conference and 
the preparation of the TgX manuscript of the proceedings you are presently reading. 

Graz, July 1997 
W. Desch, F. Kappel, K. Kunisch 
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ABSTRACT. In this paper we present an approximation framework and theoretical conver- 
gence results for a class of parameter estimation problems for general abstract nonlinear 
hyperbolic systems. These systems include as a special case those modeling a large class of 
nonlinear elastomers. 
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1. Introduction 

We consider the following class of abstract nonlinear damped parameter dependent 
hyperbolic systems evolving in a complex separable Hilbert space H: 

(1.1) wtt + Ai{q)w + A2(q)wt+Äf*g(q){ßfw) = f(t;q) 

(1.2) w(0) = (f0 

(1.3) tut(0) = pi. 

Here Ai{q),A2{q) are unbounded operators depending on some parameter q, g(q) is 
a parameter dependent nonlinear operator in H, J\f is an unbounded operator, and 
/ is a parameter dependent forcing term. Precise conditions on these operators are 
given below. 

This class of systems was introduced in [BGS, BLMY] and further studied in 
[BLGMY] as a model for the behavior of nonlinear elastomers. These materials, 
which are used in the development of active and passive vibration devices, are rub- 
ber or polymer based composites that involve complex viscoelastic materials. Their 
behavior cannot be adequately modelled using the theory of linear elasticity. Indeed, 
they exhibit nonlinearities in material and geometric properties so that there is a 
nonlinear relationship between stress and strain even for small strains. We illustrate 
with a simple example that takes into account these nonlinearities, and describe the 
associated general parameter estimation problems. (For detailed discussions of this 
and other models see [BLMY, BGS, BLGMY, BL].) 
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Consider an isotropic, incompressible rubber-like rod under simple elongation with 
a finite applied stress in the principal axis direction x± = x. Let w denote deformation 
in the x direction. Following the derivation of the model in [BLMY, BGS, BL] we 
arrive at the partial differential equation 

.   ,, Ad
2w      d (EAdw\      d (EA_(dw\\      _ 

(L4) pAW ~ d~x (x^j - Yx KT9 \Tx)) = F> 
where p is mass density, E is the generalized modulus of elasticity, A is the cross 
sectional area, and F is an applied external force. If one assumes that the rod is 
composed of a neo-Hookean material (see [BL]), then the nonlinearity g in (1.4) is 
given by g(£) = 1 — TJTW for —1 < £ < 1. Assuming that we have a slender 
rod of length £ that satisfies w(t,0) = w(t,£) = 0, and defining V = HQ(0,£) and 
H = L2{0J), we obtain the usual Gelfand triple V --> H « H* <-► V* where 
V* — H~l(Q,l). Then equation (1.4) with the specified boundary conditions can be 
written in the variational form: 

(1.5) pAwtt + A1w + D*g(Dw)=F    in V*, 

where A\ G C(V, V*) is given by 

(Ai<p,il>)v;v = {-YDtp,Dil>} 

and D = ^ G £(V, H) is the spatial differentiation operator. For a realistic model 
we also must include some type of material damping which is known to be present 
in elastomers (indeed in all materials). Here we assume an internal damping of the 
form Aiwt, where <42 £ £(V2, V^*) and V <^-> V2 

c-*- H. In the case of Kelvin-Voigt 
damping we define V2 = V = HQ(Q,£) and 

(A2tp,i>)v2\V2 = {cDD^p,Dip)H, 

where Co £ A»(0, £)• (We remark that the exact form of the damping mechanism in 
elastomers is not known and, indeed, is the subject of current research.) With the 
damping included, we find that our model in variational form for the neo-Hookean 
elastomer rod is given by 

(1.6) pAwtt + A1w + A2wt + D*g(Dw) = F    in V*. 

If this model is to be used for simulation or control of the behavior of the elastomer 
rod we need values for p, E, A, cD, F, £. Some of these can be given or measured ex- 
plicitly (e.g., A,£, F), or can be found from manufacturers specifications (so-called 
"book-values"). However, some parameters (e.g., E, cp) cannot be measured or ob- 
tained this way. Also, the "book-values" can vary considerably between samples. 
Thus we need a method to estimate these "unknown" parameters by dynamic exper- 
iments with the sample itself. Moreover, the nonlinearity g is in general unknown 
and must be estimated (the neo-Hookean assumption is only a first approximation to 
actual material properties) or chosen from a general class of admissible nonlinearities. 

In one general parameter estimation formulation equation (1.6) takes the form 
(1.1)—(1.3) where the structural operators Ai,A2, the nonlinearity g and the input 
/ have all been parameterized by a vector (possibly infinite dimensional) parameter 
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q that must be estimated. Here the parameter q takes values from an admissible 
parameter set Q. Suppose that we have a set of measured observations z = {ZJ}|LI 

corresponding to measurements (e.g., displacements, velocities) taken at time £;. In 
a general least squares parameter estimation problem, we seek to minimize the least 
squares output functional 

J(q,z) = \C2{C1{w(ti,-;q)}-{zi}}\\ 

over q G Q, where {w(ti, •;<?)} are the parameter dependent solutions of (1.1)—(1.3) 
evaluated at time titi = 1,2, ...K, and | • | is an appropriately chosen Euclidean 
norm. The operators C\,C2 depend on the type of the collected data. For example, 
if Zi is time domain displacement, velocity or acceleration at a point x, then C\ 
involves differentiation (0,1 or 2 times, respectively) with respect to time followed 
by pointwise evaluation in t and x. The operator C2 is the identity in the case of 
time domain identification, while it is related to the Fourier transform if we consider 
fitting the data in the frequency domain (see Chapter 5 of [BSW] for details). 

In this formulation the minimization problem involves an infinite dimensional state 
space and (in general) an infinite dimensional admissible parameter set Q. To over- 
come this difficulty and to obtain a computationally tractable method, we use the 
general ideas described in [BSW]. Namely, let HN be finite dimensional subspaces of 
H, and QM be a sequence of finite dimensional sets approximating the parameter set 
Q. Denote the orthogonal projections of H onto HN by PN. One can formulate a 
family of approximating estimation problems with finite dimensional state spaces and 
finite dimensional parameter sets in the following way: find q G QM which minimizes 

(1-7) JN(q, z) = \Ö2 {C^iU, •; <?)} - {Zi}}\2 , 

where wN(t; q) G HN is the solution to the finite dimensional approximation of (1.1)- 
(1.3) given by: 

(1.8) «, 4>)v*y + (A1(q)wN, <j>)v.y + (A2w?, 0)^ + (g(q)(AfwN),Afct>) 

= (f(t;q),(f>}v2',V2 

(1.9) ^(0) = PN<f0, <(0) = PV 

for all tp<EHN. 
Solution of these approximate estimation problems (1.7)-(1.9) provides one with 

a sequence of parameter estimates {qN,M}. The crucial question is when one can 
guarantee that this sequence (or some subsequence) converges to a solution of the 
original infinite dimensional parameter estimation problem. Under certain suitable 
assumptions on the approximating spaces HN and approximating sets QM this ques- 
tion is answered in [BSW] for linear systems and here we extend these ideas to include 
nonlinear systems. 

To permit use of the method outlined above we must be certain that the above 
systems (1.1)—(1.3) and (1.8)-(1.9) have solutions in some sense for each q G Q. 
This well-posedness problem (without considering the parameter dependent case) 
was solved in the recent paper [BGS]. In the following section we summarize these 
results and give precise conditions under which (1.1)—(1.3) has a unique weak solution 
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for each q e Q. Then in Section 3 we give assumptions on the general parameter 
estimation problem that we shall use to prove convergence. We also recall Theorem 
5.1 from [BSW] that provides a sufficient condition for the convergence of the solutions 
{qN,M} 0f the approximate estimation problems to a solution of the original parameter 
estimation problem. Then in Section 4 we show that this condition is satisfied in our 
case under natural assumptions on the parameter dependence oi Ai,A2,g and /. 

2. Formulation of the Problem 

We assume that there is a sequence of separable Hilbert spaces V, V2, H, V*, V2* 
forming a Gelfand quintuple [BIW, Wl] satisfying 

(2.1) V <-* V2 — H — V2* — V\ 

where we assume that the embedding V ^-> V2 is dense and continuous with \tp\y2 < 
c\tp\v for ip e V and V2 ^-> H is a dense compact embedding with \<p\ < c\ip\V2. The 
norm in H will be denoted by | • | while those in V, V2 etc. will carry an appropriate 
subscript. We denote by ( , )v*,v, etc., the usual duality products [Wl]. These 
duality products are the extensions by continuity of the inner product in H, denoted 
by ( , > throughout. Let Q be an infinite dimensional parameter set. The operators 
Ai(q) and A2{q) are defined in terms of their sesquilinear forms a^q) : V x V -> 
C and a2{q) : V2 x V2 -» C.   That is, AM G C(V,V*),A2(q) € C{V2,V2*) and 
(Ai(q)ip,ip)v,v = ^I(<7)(<AV0> {M{q)^P^)v2',v2 = (T2(q)(<P,1>)- 

Let CT denote the space of functions w : [0, T] —> H such that 

wGCW([o,r])v2)nLoo([o)r],v) 

(the subscript W denotes weak continuity), and 

wt€Cw([0,T},H)nL2([0,T},V2), 

where the time derivative wt is understood in the sense of distributions with values 
in a Hilbert Space (see, e.g., [Lil]). The space CT is equipped with the norm 

(2.2) \W\CT = ess sup (\wt(t)\ + \w(t)\v) + ( f \wt{t)\l2dt]     . 
te[o,T] \J0 ) 

Definition 2.1. Wt say that w £ CT is a weak solution of the problem fLlJ-fl^ 
if it satisfies the equation: 

r Jo 
Wr(r), VT(T)) + (Ti(q) {W{T), T]{T)) + a2(q) (WT(T), T?(T)) 

dr + (wt(t),r]{t)) (2-3) +(g(q)(Mw(r)),Afr,(r)) 

= <¥>i,J?(0)) + Jo(f{T;q),r,(T))viy2dT, 

for any t € [0, T] and any n G £T, as well as the initial condition 

(2.4) w(0) = <p0. 
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Equivalently, w is a weak solution if 

(2.5)    (wtt,ri)v*y+a1(q){w,V)+a2(q){wt,ri) + (g(q)(ßfw),Afr]) = (f(q),r]}V2*y2 

is satisfied for all rj G CT and for almost all t G [0, T}. 

To establish our parameter estimation convergence results, we first make the fol- 
lowing assumptions (these assumptions are the same as in [BGS] except that here 
we require them to be satisfied uniformly for all q £ Q) which will guarantee well- 
posedness for all q G Q- 

Al) The form a^q) is a Hermitian sesquilinear form: for ip, ip G V 

(2.6) a1(q)(ip,ip)=a1(q)(ip,ip)  for every q G Q. 

A2) The form oi{q) is V bounded: for <p,ip G V 

(2.7) Wi{q)(<P,il>) < ci\<p\v\i>\v  for every q G Q. 

A3) The form ai(q) is strictly V coercive: for ip G V 

(2.8) Re<Ti(q)(<p,<p)=(Ti(q)(<p,<p)>h\(p$,     h > 0 

for every q G Q. 

A4) The form a2{q) is V2 bounded: for <p, ip G V2 

(2.9) M^X^T/OI <c2\ip\vMv2  for every q G Q. 

A5) The real part of cr2(q) is V2 coercive and is symmetric: 

(2.10) iteo-2(«)(<P,<p) + AoM2>*fcMvi    fc2>0,A0>0 

(2.11) Rea2(q)(ip,ip) = Rea2(q)(ip,<p),   to any tp,ip eV2,q e Q. 

A6) The forcing term /(g) satisfies / G L2([0, T], F2*) for every q G Q. 

A7) The operator A/" satisfies 

(2.12) N e £(V2, #) with |A^| < yjl \y\V2 

and the range of Af on V is dense in iL 

Note that (2.12) and V ^ V2 implies 

(2.13) AT G C(V,H) vith \Af<p\<Vk\(p\v 

with /c = c2fc. 

A8) The nonlinear function g(q) : H -> if is a continuous nonlinear mapping of real 
gradient (or potential) type. This means that there exists a continuous Prechet- 
differentiable nonlinear functional G(q) : H -> K\ whose Frechet derivative 

G'(q)((f) G /^(i^IR1) at any ^eiJ can be represented in the form 

(2.14) G\q){<p)ip = Re(g{q)(ip),ip)     for any ip G H. 
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We also require that there are constants C\, C2, C3 and e > 0 such that 

(2.15) - \k-\h - £)M
2 - Ci < G{q){ip) < CM2 + C3, 

for every q G Q, where k is from (2.13) and k\ from (2.8). 

A9) The nonlinear function g(q) also satisfies 

(2.16) \g(q)(ip)\<CM + C2,    <ptH, 

for every q G Q, for some constants Ci, C2. 

An additional condition is necessary for uniqueness of solutions. 

A10) For any <p G H the Frechet derivative of g{q) exists and satisfies 

(2.17) g'{q){ip) G C(H, H) with \g'(q)(<p)\C(H,H) < C3  for every q G Q. 

All) We assume that for any u, v G £r, the following inequality is satisfied for any 
t£[0,T\,q€Q: 

f^Re{g{q){Mu{T)) - g{q){Mv{T))M<T) - Uv{r)) 

(2.18) + hk-^Afuir) - Afv(r)\2\ dt 

+ a((J*\u(T)-v{T)\2dtSj     J>0, 

where a(£) > 0 is a continuous function in £ > 0 such that 
i) a(0) = 0, 

ii) there exists a first derivative such that a'(0) = 0. 
Note that (2.18) is satisfied if, for example, 

(2.19) Re(g(q)(<p) - g{q){i>), ^p-^) + hk'^ip - ^|2 > 0 

for any ip,tp G H, where k and k\ are the constants in (2.8) and (2.13). Thus 
if H = L2{tt), n C Rm, so that g(q) : K -> R, then a sufficient condition for 
(2.19) is that </'(?)(0 > -*i for some h > 0. 

In [BGS] it is shown that 

Theorem 2.1. Under conditions A1)-A11) the system fl.l^-fl.3j /ias a unique weak 
solution w G CT for every initial condition (^>0,¥>i) G V x i?. The weak solution 
satisfies 

(2.20) (wtt,ri)v,y+a1{q)(w,ri)+a2(q)(wt,n) + (g(q)(Nw),Nr)} = (f(q),r))V2*y2 

for all TJ G CT,q G Q and for almost all t G [0,T]. .Afeo, w G CV([0,T], V2), iyt G 
Cw([0,T],H) and the weak solution depends continuously on initial conditions. 
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3. The General Parameter Estimation Problem 

Assume that we have a set of observations z = {2j}|Li corresponding to measure- 
ments taken at time t{. As stated in the Introduction we would like to find a solution 
for the least squares minimization problem, i.e., find q G Q that minimizes 

(3.1) J(q, z) = \Ö2 {CiMU, •; <?)} - {zi}}\2, 

where {«;(£$, •; q)} are the parameter dependent solutions of (1.1)—(1.3) evaluated at 
time ti,i = 1,2,.. .K. To this end, we consider Galerkin type approximations to 
(1.1)—(1.3) and define a family of approximating parameter estimation problems. 

Let HN be finite dimensional subspaces of H and let QM be finite dimensional sets 
approximating (in a sense to be made precise below) the parameter set Q. Let PN 

denote the orthogonal projections of H onto HN. Then the approximate parameter 
estimation problems can be stated in the following way: find q G QM that minimizes 

(3.2) JN(q, z) = \Ö2 {C1{wN(ti, •; q)} - {*}}|2 , 

where wN(t; q) G HN is the solution to the finite dimensional approximation of (1.1)- 
(1.3) given by (1.8)-(1.9). 

We make the following assumptions for the spaces HN and H and the sets QM 

and Q (see [BSW]). 

Bl) The sets Q and QM lie in a metric space Q with metric d. We assume that Q and 
QM are compact in this metric and there is a mapping iM : Q —> QM such that 
QM _ j^M^Qy Also, for each q G Q, iM(q) —> q in Q with the convergence 
uniform in q G Q. 

B2) The finite dimensional subspaces HN satisfy HN C V. 

B3) For each ipeV, \ip - PNtp\v -+ 0 as N -► oo. 

B4) For each i\> G V2, \tp - PNip\v2 -^ 0 as N ^ oo. 

We also assume that A\,A2,g,f depend continuously on the parameter q G Q, 
i.e., they satisfy the following conditions: 

Cl) \cfi{q){(t),ip) - ai{q){(j),il})\ < 7i%,<7)l0|vMv, for every cf),ip G V. 

C2) \cr2(q)(£,r}) - (x2(q)(^v)\ < 'J2d(q,q)\^v2\v\v2, for every ^,rj G V2. 

C3) \g(q)(<f>) - g(q)(<t>)\ < l3d(q, q)\</>\ for all </> G H. 

C4) The mapping q —> /(•; q) is continuous from Q to L2([0, T], V^*). 

Under conditions A1)-A11), Bl), Cl)-C4) we know that a solution {qN'M} to 
the approximate parameter estimation problem (1.7)—(1.9) and a solution q to the 
original parameter estimation problem for (3.1) exist. A general sufficient condition 
for the convergence of {qN'M} to q is given in Theorem 5.1 of [BSW] (see also [BK]): 

Theorem 3.1. To obtain convergence of at least a subsequence of{qN'M} to a solution 
q of minimizing ^3.1,) subject to fl.l^-(1.3,), it suffices, under assumption Bl), to 
argue that for arbitrary sequences {qN'M} in QM with qN<M —> q G Q, we have 

(3.3) C2ClW
N(t; qN>M) -> C2ClW{t; q). 
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4. Convergence Results 

In this section we show that under our general conditions given above, the con- 
vergence criteria (3.3) of Theorem 3.1 holds for a reasonable class of observation 
operators C\,C2. 

Theorem 4.1. Suppose that assumptions Al)-All), Bl)-B4) and Cl)-C4) are sat- 
isfied. Let qN be arbitrary in QN such that qN -^ q £ Q as N ^ oo. Then we 
have 

wN(t,qN) -► w(t,q) in V, for allt>0 

and 

w?(t, qN) —> wt(t, q) in H for allt>0 and in V2 for almost all t>0, 

where wN, wf satisfy 

{w»(t),4>)v*y + o-2(qN)(w?(t),cf>) + a1{qN){wN {t)^) + (g{qNWW
N\N<t>) 

= {f{t,qN)A)viy2 

(4.1) wN(0) = PNpo , <(0) = PN<Pi 

for all 4> G HN, and w,wt satisfy 

(wtt{t),(l>)v,,v + a2(q)(wt(t),(l)) + o1{q)(w{t),(f)) + (g{q){Afw),Af(l)) 

= {f(t,q),(l>)v2*,v2 
(4.2) io(0) = fo , wt(0) = ipi 

for all </>€V. 

Proof: We know that w(t) G V, wt{t) G H for all * > 0 and wt(t) G V2 for almost all 
t > 0. By the triangle inequality 

\wN(t, qN) - w(t, q)\v < \wN(t, qN) - PNw(t, q)\v + \PNw(t, q) - w(t, q)\v 

By assumption B3) the second term on the right side goes to 0 as N -► oo. So to 
prove our statement about wN(t, qN) it is enough to show that the first term on the 
right side also goes to 0 as N —> oo. Similarly, 

\w»(t,qN) -wt(t,q)\V2 < \w?(t,qN)-PNwt(t,q)\V2 + \PNwt(t,q) - wt(t,q)\v2. 

The last term again goes to 0 by B4), so to prove our statement it is enough to show 
that the first term also converges to zero. 

Let us introduce the following notation: 

wN = wN(t, qN), w = w(t, q)    and    A^ = wN(t, qN) - PNw(t, q). 
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Then 

(4'3) - (g(qN)NwN,MiP) - (M^vin+oM&uW + aMM) 

+ (g(q)Nw,M^) + (wtt - ^PNw,ip)v,y. 

AN = WN _ ^pNw = WN _ pNWu 

M = WN _   *pNw tt tt dt2 

since Wi G L2([0,t], V2). 
From (4.1) and (4.2) we have that for every ip £ HN: 

(A#, 1p)v.y = (W% ~ Wtt + Wtt ~ -^PNW,1p)V,y 

(f(qN)^)vi,v2 - ^2^)«^) - ^X^A VO 

By adding and subtracting we obtain for all ip £ HN 

<A£, V>)v.,v + ai(qN)(AN,i>) = (wti - ^PNw^)v.y 

-(f(q)-f(qN),i>)v2*,v2 

(4.4) + a2{qN)(Wt _ PN
Wt^) + a2{q){wt^) - a2(qN)(wt^) 

+ <7!(</")(«; - PNw, V) + in{q)(w, VO - cr^iw, xfi 

- a2(q
N)(A? ,i/>) + (g(q)Afw,W) - (g(qN)AfwN\N$). 

We may choose ip = Af since Af G HN. Then (A£, AfV.v = H\A?\2
V. As in 

[BSW] we find: 

ft ((|Af & + ffl(^)(Aw, A")) = 2Re {(wtt - ^2P
Nw, A?V,v 

-</(g)-/(^),Af)^2 
(4.5) + CT2(^)K _ P^tj A^} + aM{wu AN} _ a2{qN){wu AN} 

+ a^Kw - PNw, Af) + a^K Af) - ^(q^w, Af) 

- a2(^)(Af, Af) + (g(q)Afw,MA?) - (g(qN)MwN ,MA?)}. 

We denote the left side of (4.5) by L(t) and the right side by R(t).  Integrating L 
from 0 to t, using initial conditions 

AAr(0) = «^(0) - PNw{0) = wN{0) - PN<p0 = 0 

and 
Af(0) = < (0) - PNwt(0) = <(0) - PV = 0, 

along with A3), we have 

(4.6) £ns)ds>\A?\l + k1\A
If\*r. 
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We next argue that 

(4.7) f R{s)ds < in6N(t) + H2 f \*?\v + h\AN\2vds, 
JO •**) 

where 6N(t) -> 0 as N -> oo and ßi,ß2 are positive constants. Then by Gronwall's 
inequality we obtain that 

h\AN{t)\2v + |Af {t)\l -► 0 as N -> oo for each * > 0, 

which implies the desired results. 
Proceeding as in [BSW], we have that 

(4.8) 

where 

f R(s)ds < ^{t) + V2 f |Af \l + h\AN\2vds 
Jo Jo 

+ 2 Re J* ({g(q)jVw,jV&?) - (g(qN)jVwN,AfA?)) ds, 

6N(t) = J*Re{(wtt - ^P»w,A?)v,y + \f(q) - f(qN)\% 

(4-9) +c\\wt - PNwt\l2 + 7
2d2(q, qN)\wt\

2
V2 

+ c2\w-PNw\2v + 1
2d2(q,qN)\w\2v}ds, 

and 6N(t) -> 0 as N -► oo by (5.18) of [BSW], B3), B4), properties of w,wt and 
assumptions of the theorem. Finally, we need to show that the last integral containing 
the terms involving g can also be estimated from above by an expression similar to 
the right side of (4.7). We may argue 

| [\g(q)AfW,jVA?) - {g(qN)jVwN,jV^)ds\ 
Jo 

<\ [\g(q)jVw-g(qN)jVw,jV&?) + (g(qN)jVw-g(qN)jVwN,jV^)ds\ 
Jo 

(4.10) <I [\jld2(q,qN)k\w\2v + k\A?\2v)ds 
I Jo 

+ | f\g{qN)Nw - g(qN)jVPNw,jV^)ds\ 
Jo 

+ I f\g(qNWPNw - g(q
N)NwN,NA»)ds\. 

Jo 

Now the first integral on the right is dominated by the right side of (4.7) (with suitably 
chosen constants). To estimate the last two integrals we use the same method as in 
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[BGS]. We have 

I f {g{qN)Nw - g(qN)NPNw,N^t)ds\ 
Jo 

= \[\[g'(öNw(s) + {l-8)AfPNw(s))[Nw(s)-AfPNw{s)}de,JsfA?)ds\ 
(4.11)      Jo

t
Jo 

< I C3\Äfw-ßfPNw\\AfA^\ds<=- [ (ÖlWw-JsfPNw\2+\NA?\2)ds 
Jo 2 Jo 70 

< \k t C2\w - PNw\2vds + \k f \A?\2vds. 
2   Jo 2   Jo 

Here the first term in the last expression goes to 0 as N —> oo by B3) and properties of 
w, while the second is dominated by second term on the right side of (4.7). Similarly, 

I f (g(qN)NPNw - g(qN)AfwN,NA?)ds\ 
(4.12) Jo 

<=-kf C2\PNw - wN\2v + |Af \2vds < ijfc / C2\AN\2V + \A?\2vds, 
2   Jo 2   Jo 

which again is dominated by the right side of (4.7).   This completes the required 
arguments. D 

We note that the above theorem gives a computationally tractable method to 
solve the parameter estimation problem involving (3.1) in case the data collected 
consists of displacement or velocity measurements, i.e., C\ is either the identity or 
differentiation with respect to time once followed by evaluation in t and x. However, 
the case of accelerometer data is more complicated, since then Theorem 3.1 requires 
Wa(t; qN) —> wtt(t; q) in V* for t G [0,T]. We will now give conditions under which 
this convergence can be obtained. 

Let us suppose that V2 = V, i.e., we have strong damping, such as Kelvin-Voigt 
damping in the example given in the Introduction. We can formulate the system 
(1.1)—(1.3) in variational form (4.2) and rewrite it in first order vector form on H = 
V x H in the coordinates 

' Zl \ = ( w 

Z2  ) \Wt 

We define V = V x V and a(q) : V x V -> C by 

°{q) (( rj )'($)) = -Mv + *i(9)(£.V0 +^(q)(v^)- 

Then (4.2) can be rewritten as 

(4.13) (zt, $) + a(q)(z, *) = (F(q), $) for all $ G V 

(4.14) ,(0) = ( ^ 

where 

m=[f(q)-M*9{q)Wzi) 



12 Approximation Results for Parameter Estimation in Nonlinear Elastomers 

We can also write this in the equivalent operator form (not distinguishing between 
row and column vectors): 

(4.15) zt = A(q)z + F{q) 

(4-16) -(0) = ( l\ 

where <j(g)($,#) = {-A{q)^,^)V\v with 

0 / 
-AM   -A2{q) Mq) 

It is shown in [BIW, BSW] that if V = V2, then A(q) generates an analytic semigroup 
S(t; q) on V* = V x V*. Then the weak solution of (1.1)—(1.3) can be represented in 
the form: 

("i   «* «> = (:<«;»)) - s«;«> (£)+jfs" -r; 9)ir(T; «>*• 
Letting HN = HN x HN, we can restrict <r(g) to HN xHN, denote this restriction 
by aw and define AN(q) : HN -> Hw by (^(g)*, *) = aAr($, *) for all $, * G 
fl"^ x ff^. Then AN generates an analytic semigroup SN(t; q) on HN. Solutions of 
(1.8)-(1.9) can then be represented as: 

(4.18)   ^(*;«)= ($1$) =^(t-,q)^yfo^(t-r,q)^F(r-,q)dr, 

( PNF \ 
where P^F is understood to mean I   pN  *      if F{ are the components of F and 

PN : V* —> i/^ is the generalized projection (in the sense of the duality product). 
We can then use the theory developed in [BR] to obtain zf(i; qN) -> ^(i; g) when 
gw -y q. Note that this will guarantee that w%(t; qN) -> wtt(t; q) in V* for t G [0, T] 
(which is what we desired). According to Theorem 3.1, 3.2 in [BR] and the remarks 
following them, this convergence is guaranteed if we can argue convergence of (4.18) 
to (4.17) after differentiation of these terms with respect to time. Since we have 
analytic semigroups we obtain this property if F(q) G L°°([0,T], V*) (i.e., pointwise 
defined and bounded V* valued functions) and PNip -> ip in V*. Thus, we can state 
the following theorem: 

Theorem 4.2. Let V = V2 and f(q) G L°°([0,T\,V) in the system (l.l)-(l.Z). Let 
A1)-A11), Bl)-B4), Cl)-C4) hold. Morover, assume that PN<p -> <p in V* for 
tp G V*.    Then for any qN -> q G Q we have w%(t;qN) -> wa{t;q) in V* for 
te[0,T\. 

Proof: Using the arguments in [BR] with (4.17), 4.18 we only need to argue that 
f(-;q)-Af*g(q)(N'z1) G L°°{[0,T],V*). But this follows from the fact that /(g) G 
L°°([0,T},V*),z = weCw(lO,T},V2)andAf££{V2,H).     D 

Acknowledgement: This research was supported in part by the Air Force Office of 
Scientific Research under grant AFOSR F49620-95-1-0236. 
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ABSTRACT. In this paper preconditioners for linear systems arising in interior-point meth- 
ods for the solution of distributed control problems are derived and analyzed. The matrices 
K in these systems have a block structure with blocks obtained from the discretization of 
the objective function and the governing differential equation. The preconditioners have a 
block structure with blocks being composed of preconditioners for the subblocks of the sys- 
tem matrix K. The effectiveness of the preconditioners is analyzed and numerical examples 
for an elliptic model problem are shown. 
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Key words and phrases. Preconditioners, iterative methods, interior point methods, linear 
quadratic optimal control problems. 

1. Introduction 

The discretization of distributed linear quadratic optimal control problems with 
bound constraints on the controls and on the states leads to large scale quadratic 
programming problems. Because of their complexity and convergence properties, 
interior point methods are attractive solvers for such problems. They are iterative 
methods which in each iteration generate approximations to solutions that are strictly 
feasible with respect to the bound constraints. Within each iteration, large indefi- 
nite linear systems have to be solved. If interior point methods are applied to linear 
quadratic control problems governed by partial differential equations, then iterative 
techniques usually have to be applied to solve these linear systems. To make inte- 
rior point methods efficient, it is important to solve these linear systems efficiently. 
Krylov subspace methods are iterative linear system solvers, which are very suitable 
in this context. They do not require the system matrix in explicit form, but only 
require matrix vector multiplications. This is very useful since for the problems under 
investigation the system matrices have a block structure in which blocks are related 
to discretized differential equations. The convergence of Krylov subspace methods 
depends on the distribution of the eigenvalues of the system matrix. Roughly speak- 

*This author was supported by the NSF DMS-9403699, AFOSR F49620-93-1-0280, and in part 
by the DoE DE-FG03-95ER25257. 
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ing, their convergence is the better the more the eigenvalues of the system matrix 
are clustered and the smaller the clusters are. Ill-conditioning of the matrix, i.e. a 
large quotient of largest absolute eigenvalue divided by smallest absolute eigenvalue, 
typically corresponds to a poor convergence of Krylov subspace methods. To improve 
the convergence of these methods nonsingular matrices are constructed so that the 
similarity transformation with these matrices leads to a system with better clustered 
eigenvalues. These matrices are called preconditioners. The purpose of this paper is 
the construction of such preconditioners for systems arising in interior-point methods 
for certain distributed control problems. 

To illustrate the issues, we consider the following elliptic model problem. 

(1.1) min - jjjj{x) - yd{x)f + \JdQ u2(x)ds 

over all (y, u) satisfying the state equation 

,, 0, -Ay(x) + y(x)   =   f(x)      xeQ, 
(L2) £y(x)  = u(x)     xedü 

and the bound constraints 

Viow < y{x) < yupp     a.e., 

uiow < u(x) < uupp     a.e. 

A discretization of the problem with, say, finite elements, leads to a quadratic pro- 
gramming problem of the form 

(1.4) min -ylMyyh + ~u[Muuh + cTyh + (Fuh 

subject to 

(1.5) Ayh + Buh = b, 

(1.6) 
yti,iow s yk s Vh,uppi 

1J>h,low — l^h — ^h,upp' 

Here h indicates the mesh size of the discretization and uh £ Mn", yh G Rny represent 
the discretized controls and states, respectively. The matrices Mu G Rra«x™« and 
My G Mn!'x"!' are positive definite. The vectors yh,iow, ■ ■ ■ ,uhiUpp are obtained from 
the bound constraints (1.3) in a straightforward way. 

There are various classes of interior point methods. They all (after possible trans- 
formations) require the solution of linear systems with system matrices 

( Hv    0     AT 

(1.7) K=\    0    Hu   B
T 

\ A    B     0 

where 

(1.8) Hy = My + Dv,    Hu = jMu + Du, 
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with some positive semidefinite diagonal matrices Dy and Du. Since the matrix K 
is related to matrices arising in the Karush-Kuhn-Tucker optimality conditions, we 
call K a Karush-Kuhn-Tucker (KKT) matrix. 

Even though the exact form of the diagonal matrices Dy and Du differs from interior 
point method to interior point method, they all have in common that diagonals of 
Dy and Du grow unbounded if the corresponding components of yh or u% converge 
towards a bound. 

The matrices K arising in interior-point methods for the solution of problems like 
(1.1)—(1.3) are usually ill-conditioned. There are at least two sources for the ill- 
conditioning. One source is the discretization of the infinite dimensional problem. 
Typically, the eigenvalues of K spread out towards zero if the discretization is refined. 
The second source are the large diagonals in Dy and Du that arise if variables ap- 
proach the bound. This source is due to the interior-point method. Ill-conditioning 
also arises if the original infinite dimensional problem is ill-posed. The precondi- 
tioners derived in this paper are designed to remedy the ill-conditioning arising from 
the first two sources. They use the block structure of K and are composed of pre- 
conditioned for the blocks My, Mu, and A of K. This allows the use of known 
preconditioners for the governing differential equations. Moreover, computationally 
expensive parts of the preconditioner have to be computed only once during the 
interior-point method, since only the diagonal contributions Dy and Du change from 
one interior-point iteration to another. 

Preconditioners for problems related to this one are investigated in other papers. 
There are several papers, e.g. [5], [15], [17], investigating preconditioners for systems 
arising in the numerical solution of partial differential equations such as the Stokes 
equations, or the biharmonic equation. These systems can also be viewed as KKT 
systems. However, the blocks in those matrices are different and, therefore, the 
preconditioners for those problems are different than the ones introduced here. In 
fact, if the governing equations would be the Stokes equations, or the biharmonic 
equation, then the preconditioners in the papers cited above could be used as blocks 
in the preconditioners introduced here. Some of the tools provided in those papers, 
in particular a result from [15], cf. Lemma 5.1, are heavily used in our analysis. 
Preconditioners for interior-point methods for linear programs (LP) are investigated 
in [9], [10]. Those preconditioners are for general LPs and are based on sparse matrix 
factorizations or on the SOR method. Since no particular structure is assumed, those 
papers do not contain any theoretical result on the quality of the preconditioner. 

This paper is organized as follows. In the first part we study the QP problem. Sec- 
tion 2 investigates the problem (1.1)—(1.3) and its discretization. The Sections 3 and 4 
discuss the optimality conditions for the QP (1.4)-(1.6) and some aspects of interior- 
point methods relevant for the construction of preconditioners. Section 5 contains 
some essential results about the Krylov subspace methods MINRES and SYMMLQ. 
The preconditioners are introduced and analyzed in Section 6. This section also 
contains some numerical tests demonstrating the quality of the preconditioners. 
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2. The Control Problem 

As noted in the introduction, one source of ill-conditioning in the KKT matrix 
is the discretization of the infinite dimensional problem. This section provides some 
results needed to address this aspect of the problem. These results can be proven for 
a general class of problems, which include the model problem (1.1)—(1.3) as a special 
case. In this section we do not consider the control or the state constraints. 

2.1. The Abstract Problem. Let y and U be Hilbert spaces. These spaces play the 
role of the state and the control space, respectively. Moreover, let a, b be continuous 
bilinear forms on^x^ and U x y, respectively. In addition, we assume that a is 
^-elliptic. In particular, there exist constants a > 0 and ß > 0 with 

a\\y\\2y<a{y,y),    b(u,y) < ß\\u\\u\\y\\y,    Vy£y,u£U. 

Furthermore, let Z be a Hilbert space and C G £(y,Z). In particular there exists 
£ > 0 such that 

\\Cy\\z < CWvh   Vyey. 
With some linear functional I on y we consider the problem 

(2.1) min      ^Cy-ZiWl + ^Ml, 

(2.2) s.t.      a(y, v) + b(u, v) = l(v)   Vu G y. 

Results on the existence of solutions for problems like (2.1), (2.2) are given e.g. in 
[1], [13] and we refer to those books. 

We consider the following discretizations. Let 

yh = span{<?!>i,... ,(pny} cy,    Uh = span{V>i, • • • , Vwl C U, 

and define matrices A G Mn"x"» and B G Mn"x"" by 

Aij   =   a(4>j,^>i),    i,j = 1,... ,ny, 

Bij   =   b(ipj, fa),    j = 1,... , nu,   % = 1,... ,ny, 

and matrices My G M"»xn» and Mu G K"«xn« by 

(My)ij   =   (C<j)hC<t>i)z,    i,j = l,... ,ny, 

(Mu)ij   =   {ipj,tpi)u,    i,j = !,■■■ ,nu. 

Obviously, 
ny nu 

yT
hMyyh = || £yMC<&|||,    uT

hMuuh = || X)«/M^IIM- 
j=l i=l 

In particular, the matrix Mu is positive definite and the matrix Mv is positive semidef- 
inite. 

By || • || we denote the Euclidean norm in Rfc for some k. We can show the following 
simple, but important result. 

Lemma 2.1. There exists a constant c > 0, independent of the discretization param- 
eter h, such that 

WM^A-'BM-^W < c. 
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Proof. Let uh ^ 0 be arbitrary and set yh = A~xBM~xl2Uh, uh = M~ll2uh. Define 
V = Td=\Vh,i4>i and ü = YTi=\^h^i- By definition of A and B, 0(3/,^») = &(u,0i), 
i = 1,... , ny. Hence, 

a||y||y < a(y,2/) = b(u,y) < ß\\ü\\u\\y\\y. 

This implies 

WM^A-'BM-^WW2   _    \\M^yh\\2  _   \\Cy\\% 

IKII2 IKP IK 
r2\UA\2 
s \\y\\y 

\Ml'\h 

/►2||,.||2 r2ll?/ll2 i^2/?2 

.W„ 112 Hüll,2,    ~    a2 

a 

2.2. The Model Problem. The model problem (1.1)—(1.3) fits into the above frame- 
work, if we use the weak formulation of (1.2). The Hilbert spaces are y = H1^), 
U = L2(<9Q), and Z = L2(f2). The bilinear forms and the functional are a(y,v) = 
JQWy(x)Vv(x) + y(x)v(x)dx, b(u,v) = - Jdnu(x)v{x)dx, and l(v) = Jnf(x)v{x)dx. 
The operator C is the imbedding operator. For our discretization we use a finite el- 
ement discretization with piecewise linear functions over triangles. In our numerical 
experiments we use Q = (0, l)2 and we construct the triangulation as follows: The 
x- and y- intervals are subdivided into dx and dy subintervals. The resulting rect- 
angles are subdivided into two triangles by connecting the lower left corner and the 
upper right corner of the rectangle. Since piecewise linear approximations are used, 
the number of state variables is nv = (dx + l)(dy + 1) and the number of controls is 
nu = 2(dx + dy). 

3. The Quadratic Programming Problem 

We consider the following quadratic programming problem (QP) in standard form: 

subject to 

(3.2) Ay + Bu = b, 

(3.3) y > 0, u > 0. 

In this section the origin of the QP is not important and we omit the subscript h. 
Moreover, we absorb 7 into Muu. The standard form (3.1)-(3.3) is considered to re- 
duce the complexity of notation. Using straightforward extensions, bound constraints 
of the form (1.6) can be handled as well. Throughout this section we use the notation 

"-(££)■ s=i*)' c-wm- *=(«)■ -(£ 
We limit our discussion to convex problems and assume that M is positive semidef- 

inite. The existence of solutions of the QP (3.1)-(3.3) is guaranteed if the objective 
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Myyy + Myuu + ATp - qy = -d, 
Muyy + Muuu + BTp - qu = -c, 

Ay + Bu = b, 
yTqy + uTqu = 0, 

lyi Qu > 0, 
y,u > 0 

function is bounded from below on the set of feasible points. More precisely, we have 
the following well-known result (e.g. [6, § 12.3]): 

Theorem 3.1 (Necessary and Sufficient Optimality Conditions). // M is positive 
semidefinite and if q{x) = \xTMx + gTx is bounded from below on the set of feasible 
points {(y,u)\Ay+Bu = b, y>0,u>0}, then the QP (3A)-(3.3) admits a solution 
x*. If M is positive definite, the QP admits a unique solution. 

The vector (y,u) is a solution of (3A)-(3.3) if and only if there exist p G K™*, 
qy G K"B, and qu e R

Uu such that the Karush-Kuhn-Tucker (KKT) conditions 

(3.4) 

are satisfied. 

To learn more about the QP and the optimality system (3.4) it will be helpful to 
distinguish three cases. This discussion will also help us to relate the results in this 
paper to the results on the solution of KKT systems in interior-point methods for 
linear programming that can be found in the literature, see e.g. [10]. 

Throughout this subsection we assume that A is nonsingular and that the QP has 
a solution. As a consequence, the matrix C = (A \ B) has full row rank and the 
KKT system (3.4) has a solution. 

Bound constraints for u and y. Let (y*,M*) be a solution of the QP. Further- 
more, let {If,... JlJ and {If,... ,lvky\ denote the set of active indices for w* and y», 
respectively, 

{if, ■■■, IV = {i I K)i = o}, {H ...,ly
ky} = {i\ (y.)i = o}. 

The Lagrange multipliers at the solution satisfy 

(9„)i = 0, %$ {If,---, %} and {qu)i = 0,i ${%,...,II}. 

If we define the matrices I(y,) € JRfc»xr\ J(u») e Kfc"xn" by 

(I(y*))ij = otherwise, and     (I(u*))ij = 
if j = If, 
otherwise, 

then the KKT conditions (3.4) are equivalent to 

(3.5) 

/       Myy 
Muy 

A 

i(y*) 
0 

Myu 

Muu 

B 
0 

I(u*) 

AT 

BT 

0 
0 
0 

i(y*)T 

o 
o 
o 
o 

0   ^ (y \ ( -°\ /K)T 
u -d 

0 P = b 
0 qa

v 
0 

o    ) \<fu) I   0   / 
where qy, q% denote the Lagrange multipliers corresponding to the active indices. 



A. Battermann and M. Heinkenschloss 21 

Let I denote the number of positive components in the solution (y*, u») of the QP. 
The assumption that A is nonsingular is not sufficient to guarantee that the matrix 

(A        B    \ 
(3.6) C =     I(y*)      0        e f(%+(»»+»«-!))x(%+».) 

A B 
i(v.) 0 

0 I{ut) 

has full row rank. If C does not have full rank, then the system (3.5) does not have 
a unique solution, even if the QP has a unique solution (y*,u*). It is not difficult to 
see that in this case the Lagrange multipliers (p, qy, c&) are not uniquely determined. 

If M = 0, then the QP reduces to an LP. In this case the solution of the optimiza- 
tion problem can be found in a vertex (y*,t**). Recall that a feasible point (y,u) is 
called a vertex if the columns of C = (A \ B) corresponding to the positive compo- 
nents are linearly independent, see e.g. [6, § 2]. If (y*,u*) is a vertex, at most ny 

components of (y*, «*) can be positive and the columns of C = (A | B) corresponding 
to the positive components of the vertex (y„, u«) are linearly independent. If less than 
ny components of (y*, w*) are positive, the vertex is called degenerate, see e.g. [6, § 2]. 
In the nondegenerate case, i.e. if I = ny components of (y*,ut) are positive, then the 
matrix C has full row rank. In the degenerate case, however, I < ny components of 
(y*, ut) are positive. Thus, 2ny + nu — l>ny + nu and the matrix C cannot have full 
row rank. Hence, the solution is degenerate if and only if C does not have full row 
rank. 

Bound constraints for u. Let (y*,u*) be a solution of the QP and suppose that 
no bound constraints are imposed on y* or that the bound constraints for y* are not 
active. In this case, 

C-(A     B 

Since A is nonsingular, C has full row rank. Therefore, the system (3.4) is uniquely 
solvable if the matrix M is positive definite on the null-space of C. 

In the LP case, i.e. M = 0, the solution can be found in a vertex (y*, it*). Since, by 
assumption, y* > 0 and A is nonsingular, we can conclude that u* = 0. Consequently, 
Ilu*) G Wl"xn" is the identity matrix. In the language of linear programming, y* 
are the basis variables and u* are the nonbasis variables. Thus, this case always 
corresponds to the nondegenerate case in linear programming. 

No bound constraints. If the bound constraints are not active, then the Lagrange 
multipliers qy and qu are zero and the KKT conditions (3.4) are equivalent to the 
system (3.5) with the last two row and column blocks of the system matrix removed. 
If the matrix M is positive definite on the null-space of C, the system (3.4) has a 
unique solution. 

4. Interior-Point Methods for the Solution 
of the Quadratic Programming Problem 

It is not the purpose of this section to give an overview of interior point methods. 
We primarily address the structure of the linear systems arising in these methods to 
provide the necessary background for the construction of preconditioners. Because of 
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space limitations, we focus on primal-dual interior-point methods. However, matrices 
with similar structure also arise in barrier methods, see e.g. [19] and [8], and certain 
affine-scaling methods, see e.g. [18]. 

We continue to use the notation of Section 3 and we will employ the notation 
common in interior point methods: For a given vector x, the diagonal matrix with 
diagonal entries equal to the entries of x is denoted by X. Moreover, e denotes the 
vector of ones, e = (1,... , 1)T. 

The construction of primal-dual interior-point methods is based on the so-called 
perturbed KKT conditions corresponding to (3.4), which are given by 

Mx + C^p-q   =   -g, 
(4.1) Cx   =   b, 

XQe   =   0e, 

and x,q > 0, where 9 > 0. To move from a current iterate (x,p,q) with x,q > 0 to 
the next iterate (x+,p+,q+), primal-dual Newton interior-point methods compute 
the Newton step (Ax,Ap,Aq) for the perturbed KKT conditions (4.1) and set 

(x+,p+,q+) = (x + axAx,p + apAp,q + aqAq), 

where the step sizes ax,av,uq G (0,1] are chosen so that x+,q+ > 0. Then the 
perturbation parameter 9 is updated based on x%q+ and the previous step is repeated. 
We refer to the literature, e.g. [20] for details. 

The Newton system for the perturbed KKT conditions (4.1) is given by 

/ M   CT   -I    \ f Ax \ ( Mx + CTp-q + g\ 
(4.2) \    C \\   Ap     = - Cx - b 

\  Q X     )\Aq j V        XQe-0e        ) 

The nonsymmetric system (4.2) can be reduced to a symmetric system. If we use the 
last equation in (4.2) to eliminate Ag, 

(4.3) Ag = -X'lQAx -Qe + 9X~le, 

then we arrive at the system 

/ M + X~lQ    O1 \ ( Ax \ ( Mx + CTp + g- 9X~le (44>     (      o JU) = -( <*-> 
If Myu = 0,Muy = 0, the system (4.4) is of the form (1.7). As variables %• or m 
approach the bound, i.e. approach zero, large quantities are added to the diagonals 
(j,j) or (i,i), respectively. 

In actual computations more care must be taken during the reduction of the system 
(4.2) to avoid cancellation in the reduction process due to very large elements in X"1, 
see e.g. [9]. A stable reduction of the system (4.2) is discussed in [9]. The unknowns 
and the right hand side in that reduced system differ from those in (4.4). However, 
the system matrix in the stable reduction is equal to the system matrix in (4.4). For 
our purposes it is therefore not necessary to present the lengthier stable reduction 
and we refer to [9] for details. 
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The influence of inexact solutions of the linear systems (4.4) onto the convergence 
behavior of the primal-dual interior-point method and the control of the inexactness 
is studied in [4], [12]. 

Before we continue, we briefly discuss the three cases explored in Section 3. 
No bound constraints. In this case the diagonal contributions Dy and Du com- 

ing from the interior-point method will be zero or close to zero. Since in our case 
the matrix M is positive definite, the system (3.4) has a unique solution. The ill- 
conditioning in the matrix K in this case is purely due to the discretization of the 
infinite dimensional control problem. 

Bound constraints for u. It has been observed, e.g. [10], that in the nondegenerate 
case the KKT systems in barrier methods for linear programming can be precondi- 
tioned effectively. This will also be true in our case. If only bounds on u are active, 
efficient preconditioners can be constructed for the problems investigated in this pa- 
per. However, in our applications, ill-conditioning also arises from the matrices A. 
Although proven to be nonsingular, the matrices A arising in our applications have 
a wide spectrum which causes a large spread in the spectrum of the KKT matrix K. 
This will be investigated in more detail in Section 6. 

Bound constraints for u and y. For the construction of preconditioners in barrier 
methods for linear programming the degenerate case is the difficult one. For example, 
the preconditioners discussed in [10] are far less effective in reducing the condition 
number of the KKT matrix in the degenerate case than they are in the nondegenerate 
case, cf. Tables 1 and 2 in [10]. This will also be the case in our situation. If bounds 
are only imposed on the controls u, efficient and rather general preconditioners can 
be derived. However, if state constraints, i.e. bounds on y, are present and active, 
then the QP (1.4)-(1.6) is very often degenerate and the design of preconditioners is 
much more difficult. 

5. Solution of the Linear System 

5.1. MINRES and SYMMLQ. Two Krylov subspace methods for the solution of 
indefinite linear systems, MINRES and SYMMLQ, have been introduced in [14]. 
These methods have been successfully used for problems like the one studied in this 
paper and are used for the solution of our systems. 

We set x = {yh,Uh,Ph)T- Suppose the system to be solved is Kx = b. Given an 
initial iterate Xo we set r0 = b — Kx0. The Krylov subspace 1CJ(K, ro) is defined by 

(5.1) 1Cj(K, r0) = span{r0, Kr0,... , K0'1^}. 

In iteration j, j = 0,1,..., the minimum residual method MINRES computes 

XjeKj{K,r) 

such that Xj solves 

min     ||T*O 
— Kx\ 

xeKj(K,ro) 

In iteration j, j = 0,1,..., SYMMLQ computes the iterate 

Xj e K.j{K,r0) 
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such that Xj solves 

(r0 - KXJ)
T

V = 0   Vv € £j (#, r0). 

Since K is indefinite, such an Xj may not exist. If it does not exist, SYMMLQ 
generates an iterate using information obtained from the Lanczos tridiagonalization. 
See [14]. 

The representation of Krylov subspaces (5.1) show that Xj G K.j(K, r0) if and only 
if 

xj =Pj-i(K)ro, 

where Pj-i is a polynomial of degree less or equal to j - 1. This yields an upper 
bound for the residuals in MINRES: 

(5.2) ||r0 - KXJW = ||p](^)ro|| < min ma |/(A)|    ||r0||. 

Here A(K) denotes the spectrum of K and 11] denotes the set of all polynomials p 
of degree less or equal to j which satisfy p(0) = 1. From (5.2) one can derive error 
estimates, see e.g. [16]. For example, using Chebyshev polynomials, one can show 
the following convergence estimate for MINRES: 

K-1\U/2JM       „ 

where K = A/A is the condition number of K with A = minAeA(JR') |A|, A = maxAeA(if, |A|, 
and [j/2j is the largest integer less or equal to j/2. 

If the matrix K has an unfavorable eigenvalue distribution, one constructs a non- 
singular matrix P such that K = P~XKP-T has a smaller condition number and 
better clustered eigenvalues. Instead of Kx = b one solves the preconditioned system 
Kx = b, where K = P~1KP-T, x = PTx, and b = P_1&. Of course, the precondi- 
tioner P has to be constructed so that matrix-vector multiplications with P~l and 
P~T can be done efficiently and so that the eigenvalue distribution of P~XKP~T is 
improved. 

For more details on MINRES and SYMMLQ we refer to [14], [2], and [3]. Those 
references also contain some details of the implementation. Complete listings of the 
preconditioned MINRES and SYMMLQ algorithms are given in [3]. We have imple- 
mented MINRES and SYMMLQ in Matlab.1 Recently a version of the QMR algo- 
rithm has been developed in [9] to solve symmetric indefinite linear systems. These 
allow the application of indefinite preconditioners. If the preconditioner is positive 
definite, as in our case, then this QMR based method is equivalent to MINRES. 

5.2. Eigenvalue Estimates. If A is invertible and if Hy and Hu are positive definite, 
then the matrix K defined by (1.7) has nv + nu positive eigenvalues and nv negative 
eigenvalues. More information on the eigenvalue distribution of K is provided by the 
following result, which is proven in [15]: 

1k Fortran implementation of SYMMLQ written by M. Saunders is available from Netlib. See 
linalg/symmlq at http://www.netlib.org/linalg/index.htinl. 
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Lemma 5.1 (Rusten/Winther). Suppose that Hy and Hu are positive definite and 
that (A | B) has rank ny. Let ßi > ß2 > ■ ■ ■ > ßny+nu > 0 be the combined 
eigenvalues of Hy and Hu and let ox > a2 > ■ ■ ■ > o-„y > 0 be the singular values of 
(A | B)T. The eigenvalues \\> ...> Ky+nu > 0 > Xny+nu+i > ■■ ■ > ^2ny+nu of K 
obey 

(5.3) Mny+nu     >     -^[p-ny+nu ~ \fßny+n„ +4o"iJ, 

(5.4) Any+„u+1   <   -(m-^txl + Aal^, 

(5.5) ^ny+nu     >     Vny+nu, 

(5.6) Ai   <   ^{ßi + ^ßl + ^l). 

6. The Preconditioners 

We now turn to the preconditioners for the matrix if in (1.7). We assume that 
Hy G Kn»xn«, Hu G Mn»xn" are symmetric positive definite and that A G l"»x% is 
nonsingular. 

In the following Py and Pu are preconditioners of Hy and Hu, respectively, i.e. Py 

and Pu are nonsingular matrices such that 

(6.1) P-^P-3"«/,     and     P-^P-7«/. 

By A~x we denote an approximate inverse of A, 

(6.2) A-YA « I. 

In our numerical tests we use Pu = [diag(Fu)]1/2, Py = [diag(Hy)]1/2, and A = A. 
Since the diagonals of the mass matrices Mu and My are very good preconditioners 
for these matrices, these choices for the preconditioners P„, Py are efficient and satisfy 
(6.1). 

In our computations we use K derived from the model problem and the finite 
element discretization outlined in Section 2.2. In all computations we use dx = dy. 
MINRES and SYMMLQ were used with starting value x0 = (yh,uh,ph) = 0 and 
the iterations were stopped when ||P-1& - P^KP^XjW < 10"5. We do not test 
our preconditioners within an interior-point method, but simulate the matrices K in 
(1.7) that would arise in an interior point method by adding diagonal matrices Dy 

and Du. All computations are done in Matlab. 
In the analysis of the preconditioners it will be helpful to distinguish four cases. 
Case 1 (7 = 1, Dy = 0, Du = 0): In this case we can reduce the condition number 

of the systems under consideration considerably. By preconditioning we reduce the 
iterations required by MINRES and SYMMLQ to a number which appears to be 
independent of the grid size. 

Case 2 (7 <C 1, Dy = 0, Du = 0): In this case, the spectrum of Hu moves towards 
the origin, and while the conditioning of Hu itself is not changed, the condition num- 
ber of K increases significantly. In this situation, ill-conditioning of K is induced 
by ill-posedness of the original problem. As 7 decreases, the system with K be- 
comes hard to solve, and for sufficiently small values of 7 MINRES and SYMMLQ 
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need an unacceptably large number of iterations. The performance of MINRES and 
SYMMLQ improves on the preconditioned systems. 

Case 3 (7 = 1, Dy = 0, Du » /): If bound constraints for u are active, corre- 
sponding diagonal entries in Du increase. We write Du ~^> I and mean this to be 
understood component wise. Large entries in Du can be shown to affect the condi- 
tioning of the preconditioned system only to a moderate amount. In fact, they can 
even help to neutralize a small parameter 7 or large entries in Dy. In this case our 
preconditioners are very effective. 

Case 4 (7 = 1, Dy > /, Du = 0): This case corresponds to the situation where 
bound constraints on y are active. As mentioned in Sections 3 and 4 the solution 
may be degenerate and this case may correspond to the degenerate case in linear 
programming. Often, a large diagonal in Hy unfavorably affects the performance of 
MINRES and SYMMLQ on the preconditioned systems. While the preconditioners 
introduced in the following lead to some improvement, their effectiveness in this case 
is much smaller than in the Cases 1 and 3. We point out that in our applications the 
number ny of states is much larger than the number nu of controls. Hence if more 
than nu states are active at the solution, then the matrix C in (3.6) can not have full 
row rank. In our numerical tests for Case 4 we set Dy = 104/. This simulates the 
worst case in the sense that this corresponds to the case where all states approach 
the bounds. Our numerical tests always correspond to the degenerate case, which is 
the hard case. 

6.1. The First Preconditioner. The first preconditioner is given by 

P^=\    0     p-1       0        . 
V   0      0    p£Ä-i) 

The preconditioned KKT matrix is 

(6.3) P1-'KPrT=\      V    0   " P~l_HuP-T     p-'BTA-TPy 

and we expect that 

P-lHyPy
T 0 Py

1Ä-TÄrPv 

P^Ä^APf   P^Ä-lBP-T 0 

(6.4) P{lKP{ ■T 

J-ny 0                                Iny 

0 Inu           P^BTA-TPy 

l-Uy PfÄ-iBP^              0 

where / is an approximate identity matrix. The preconditioned system still has the 
structure allowing us to estimate its spectrum using Lemma 5.1. The derivation 
of the general form of our first preconditioner is motivated by the assumption that 
for preconditioners Py, Pu of Hy, Hu and for an approximate inverse Ä~l of A the 
singular values of 

(6.5) B = PTÄ~1BP-T 

are of moderate size. If Py = M^2, Pu = M^2, and A = A, this is guaranteed in the 
situation of Section 2.1. See Lemma 2.1. 
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Lemma 6.1. Let B G WlyXnu. The singular values at of (Im\B) are given by 

ai = \/l + aj(B),    i = l,...,ny, 

where Ui{B) are the singular values of B. If ny > nu, B has nu singular values, and 
we set o~i{B) = 0 for i = nu + 1,... ,ny. 

Proof. The proof follows immediately from the fact that the squares of the singular 
values of a matrix B are the eigenvalues of BBT. D 

In the situation of Section 2.1 the estimate in Lemma 2.1 shows that 

(6.6) ai(B) < WM^A-'BM-^W < c,    i = 1,... , ny, 

for a constant c independent of h. Thus in Case 1 (Hy = My and Hu = Mu) we expect 
that, for preconditioners Pu, Py and A neutralizing the dependency of Hy, Hu and A 
on the mesh constant h, we can similarly bound the singular values of Py

rA~1BP~T 

such that 

(6-7) <Ti(B) < ||if i-^P"! < cP, 

where cp is a constant independent of h. 
Assuming that (6.7) is valid we discuss the expected performance of the first precon- 

ditioner in the four cases defined earlier. By a\' = a\\Py
TA~~1BP~T), I = 1,2,3,4, 

we denote the singular values of PyA~1BP~T in Case I = 1,2,3,4. 
Case 1 (7 = 1, Dy = 0, Du = 0): If 7 = 1, (6.7) shows that there exists a constant 

upper bound for the singular values o-^l\HyiA^lBH~1l2). The preconditioner Pi can 
be expected to perform well if the preconditioning matrices Py, Pu and A neutralize 
the influence of the mesh size h on the submatrices and thus on the system, and 
if the singular values of PyA~1BP~T are bounded by a small constant cp.  If the 

eigenvalues of P^HyPy1 and Pu"TffuP~1 are close to one and if a\Jin <C 1, where 

a\ ' denote the singular values of (Py A~lBP~T), we can deduce 

^nv+nu ~ lj      ^ny+na+l ~ X [} ~  » ^J ' 

so that the eigenvalues of the preconditioned system are bounded away from zero. 
If in addition cr$ax, i.e. the constant cp in (6.7) is of moderate size, Lemma 5.1 
guarantees that the condition number of the preconditioned system P^lKP{T is 
small. MINRES and SYMMLQ will perform very well on the preconditioned system. 
This is confirmed by our numerical tests. See Table 1. 

The preconditioner will perform poorly if the singular values of Py
TA~1BP~T are 

not small. This happens in two of the remaining three cases. 
Case 2 (7 <?C 1, Dy = 0, Du = 0): If a small parameter 7 determines the size 

of the eigenvalues of the matrix Mu, we must expect that bounds on the norm 
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||#i/2^4-i5#-i/2|| grow with the reciprocal of ^/y.   Denoting by af] the singular 

values of H^A^BH'1/2, we have the relationship 

a<?) = J_CTW 
1        Vf 

For decreasing values of 7 the spectrum of P^Ä~lBP~T expands and the conditioning 
of the preconditioned system deteriorates. 

Case 3 (7 = 1, Dy = 0, Du > I): In this case Hu = -yMu + Du, where Du » /, 
i.e. some diagonal entries may become very large. Analogously we write Pu = 7P0 + 
PD, where PD stands for the (large) diagonal entries and P0 for the off-diagonal 
entries that are generally of moderate size. By of' we denote the singular values of 
PlÄ~1BP~T. We obtain the estimate 

y u 

a® = of\pTÄ-'BP;T) = af\P^A^B{lPo + PD)~T) 

= af\^Ä-'BPBT{lPBlPo + I)-T) 

< \\PTÄ-'B\\ \\PB
T

\\ UPB
1
PO + irT\\ < KÄ-'BW WPj 

y~  .-IIII'D nnn* D'U^J    „ ^ ,r y -   -„ „^ u 1 - \\7PSPBT\\' 

If Du dominates the matrix Hu, ||7PO-PD
T

|| will be of negligible size. If additionally 
7 < 1, this contributes to reducing the factor 1/(1 - I^Po-Pp1!!) to a constant 
close to one. The norm ||PJJ4

_:L
.B|| can be expected to be of moderate size, while 

WP^W will be very small. The singular values o-(3) converge to zero as the entries in 
the diagonal Du, and with it in PD, grow. In the case of large diagonal entries in 
Hu we can expect a good performance of the solvers on the preconditioned system, 
due to a small condition number of P{lKP{T which is in turn induced by small 
singular values of P^Ä-1BP~T. The performance of MINRES and SYMMLQ on the 
preconditioned system is documented in Table 2. 

Case 4 (7 = 1, Dy > /, Du = 0): If we denote by Py the preconditioner for Hy 

and by P0, PD its off-diagonal part and its diagonal part, respectively, then we see 
that the matrix Py

TÄ~lBP~T will have very large singular values. This is indicated 

by the estimates (M = Ä~1BPy;
Tp-1BTÄ-T) 

XmaA(P0 + PD)TM(P0 + PD)) > Xma,{PlMPD)+\mJn{PoMPo+PlMPD + PlMPo) 

and 

Xmin((Po+PD)TM(Po + PD))<Xmin(PSMPD + PEMPo+P^MPD)+Xmax(PSMP0). 

For the estimates see [11, p. 411]. While the preconditioner yields a considerable 
improvement over the unpreconditioned system, the improvement is less than in 
Cases 1 and 3. See Table 3. However, the improvement is expected to decrease as 
the diagonals in Dy become larger. 

6.2. The Second Preconditioner. We have seen that the effectiveness of precondi- 
tioner Pi depends on the size of the singular values of the matrix B defined in (6.5). 
The preconditioner P2 is designed to isolate the effect of B. In order to make the 
action of the second preconditioner transparent, we consider the ideal version of P2, 
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denoted by P2*, i.e. we choose Pu = E]J2, Py = H^2, and Ä = A. For the general 
form of the preconditioner, which is used in the computations, we refer to [3]. 

The ideal preconditioner P2 is given by its inverse as 

(AT1 

-#-1/2 

o 
Hz112 

-H^A-^BH- 

0 
0 

H^A-1 

The ideal preconditioned system is 

P^KP;-7 =    0 
V 0 0    -(/„„ + BBT) 

where B is defined by (6.5) with Pu = H^2, Py = H^2, and A = A. 
The application of the preconditioner P2 is roughly as expensive as the application 

of the preconditioner Pi. The performance of P2 is slightly inferior to the performance 
of Pi. See Tables 1-3. The eigenvalue distribution of the preconditioned system, 
i.e. the eigenvalue distribution of (/„,, + BBT), can be analyzed analogously to the 
previous case. 

Table 1 
Iterations of MINRES and SYMMLQ on K with 7 = 1, £>„ 0, Du = 0. 

grid size dx 5 10 15 20 25 30 
dimension 92 282 572 962 1452 2042 

Without Precondition!] tig 

MINRES 

SYMMLQ 

47 

47 

185 

179 

431 

407 

784 

647 

1070 

902 

1483 

1209 

Preconditioner Pi 
MINRES 

SYMMLQ 

23 

23 

25 

24 

24 

22 

21 

21 

21 

19 

19 

19 

Preconditioner P2 

MINRES 

SYMMLQ 

24 

24 

35 

35 

37 

36 

37 

35 

35 

35 

35 

33 

Preconditioner P3 

MINRES 

SYMMLQ 

7 

7 

6 

6 

5 

5 

5 

5 

5 

5 

4 

4 

6.3. The Third Preconditioner. A third preconditioner is derived from reductions 
performed to solve QP subproblems in sequential quadratic programming methods, 
see e.g. [7]. As before we use the ideal form for the presentation of the preconditioner. 
The general form of the preconditioner, see [3], is used in the computations. The ideal 
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Table 2 
Iterations of MINRES and SYMMLQ for K with 7 = 1 and Du 104 • J, D„ = 0. 

grid size dx 5 10 15 20 25 30 
dimension 92 282 572 962 1452 2042 

Without Preconditioning 
MINRES 

SYMMLQ 

54 

54 

173 

173 

349 

349 

589 

579 

857 

848 

1183 

1165 

Preconditioner Pi 
MINRES 

SYMMLQ 

16 

16 

18 

18 

18 

18 

18 

18 

18 

17 

16 

16 

Preconditioner P2 

MINRES 

SYMMLQ 

21 

21 

33 

33 

35 

35 

37 

35 

35 

33 

35 

33 

Preconditioner P3 

MINRES 

SYMMLQ 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Table 3 
Iterations of MINRES and SYMMLQ for K with 7 = 1 and Dy = 104 -I, Du = 0. 

grid size dx 5 10 15 20 25 30 
dimension 92 282 572 962 1452 2042 

Without Preconditioning 
MINRES 

SYMMLQ 

73 

73 

Pre 

282 

282 

condi 

572 

572 

tione 

962 

962 

rPi 

1452 

1452 

2042 

2042 

MINRES 

SYMMLQ 

50 

50 

98 

98 

194 

187 

289 

283 

449 

410 

530 

524 

Preconditioner Pi 
MINRES 

SYMMLQ 

61 

61 

146 

143 

235 

233 

323 

323 

453 

447 

583 

547 

Preconditioner P3 

MINRES 

SYMMLQ 

44 

44 

67 

56 

120 

120 

203 

167 

275 

286 

366 

355 

preconditioner P3*, given by its inverse as 

{PS 
0       -1/2 HyA-1 

0 0 A~l 

{A-^BY   Inu   {A-'B)THyA-^ 
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transforms K into the preconditioned system 

/ 0      /„„ 0 
(p;)-lK(p*yT 

where 

Iny 0 0 
^0        0    WTHW 

— in »=(*£ 
The matrix If is a representation for the nullspace of C = (A\B).   The matrix 
WTHW is given by 

WTHW = BTA-THVA-1B + HU = HlJ2 (BT
B + /„ W/2, 

where B is defined by (6.5) with Pu = H^2, Py = Hi'2, and Ä = A. Note that the 
partitioning of the blocks in the preconditioned system has changed. 

The preconditioner P3 is the most effective in reducing the number of iterations. 
See Tables 1-3. However, the application of the general preconditioner P3 is roughly 
twice as expensive as the application of the preconditioners Pi and P2.. See [3]. The 
eigenvalue distribution of WTHW can be analyzed analogously to the preconditioned 
system with Pi. 

7. Conclusions 

In this paper we have derived preconditioners for matrices K arising in the numeri- 
cal solution of certain distributed linear quadratic control problems by interior-point 
methods. The preconditioners are in block form, with blocks composed of precon- 
ditioners for the individual blocks of the matrix K. This allows the incorporation 
of known preconditioners for the governing equations of the original problem and it 
allows to reuse computationally expensive information within all interior-point iter- 
ations. The effectiveness of the preconditioners was analyzed using the properties 
of the control problem and its discretization, the block structure of the matrix K, 
and information from the optimality conditions. Numerical results supporting the 
theoretical analysis were given. 
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ABSTRACT. We investigate augmented Lagrangian algorithms to solve state and control 
constrained optimal control problems. We augment both the state-equation and the non- 
smooth state and control constraints. We present the method with the example of linear 
optimal control problem with a boundary control function but the proposed algorithms are 
general and can be adapted to a much wider class of problems. 
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1. Setting of the Problem 

Let Q be an open, bounded subset of IR™ , n < 3 , with a smooth boundary F. We 
consider the following optimal control problem: 

(V) min J(y, u) = -     (y - zdf dx + - / (u - udf da 
2 Ja z Jr 

(1.1) Ay = f in Q , y = u on T , 

(1.2) AlV G K , uGU , 

where 

• /, zd £ L
2(Q), u, ud £ i

2(r) and either a > 0 or U is bounded in L2(T), 
• L is a finite dimensional (Hilbert) space and Ai e £(W, L), (W is defined just 

below). 
• K and U are nonempty, closed, convex subsets of L and L2(V) respectively. 
• A is an elliptic operator defined by: 

(1.3) 

Ay = - Y, dXi{aij(x)dXjy) + a0(x)y with 

a,ij, ao G C2(fl) for i, j = 1,... , n, inf {ao(x) \ x G Q.} > 0 

E ay(*)&& ^ 6 E&2 -Va; e Ö, V£ G m»,s > 0. 
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System (1.1) is well-posed: for every (u,f) G L2(T) x L2(Q) there exists a unique 
solution y = T(u, f) in W, where 

W = { y G L\Ü) | Ay G L2{ü) , y,r G L2(r) }. 

Moreover T is continuous from L2(F) x L2(Q) to W, when VF is endowed with the 
graph norm: 

\y\2w = \y\2n + \Ml + \y\r\2r. 

From now on, when H is an Hilbert-space, we denote by ( , )H (resp. ( , )n and 
( , )r) the H (resp. L2(Q.) and L2(r)) inner products and by | \H, | |n, | |r, the 
H, L2(ß) and L2(r)-norms, respectively. Moreover, we define A : W x L2(T) —> 
L x L2(T) by A(y,v) = (Ai(y),v) and we assume that the feasible domain 

V =  { (y,u) G W x L2(r) | .Ay = / in Q, y = u on T, A(y,u) EKxU} , 

is nonempty. It is easy to see that problem (V ) has a unique solution (y, u) since the 
functional J is strictly convex and coercive and V is convex, closed and nonempty. 
Our main purpose is to present new augmented Lagrangian algorithms to solve nu- 
merically optimal control problems of the above type. Usually such algorithms use 
the augmentation of the "smooth" part of the constraints, that is the state-equation. 
This has been done in Fortin-Glowinski [3] and adapted to the present example in 
Bergounioux [1]. Here we use a different point of view, since we use a Lagrangian func- 
tion where both the state-equation and the nonsmooth constraints "Aiy G K, u G U" 
are augmented. These last constraints are augmented using a method developed in 
Ito and Kunisch [4]. 

2. Optimality Conditions 

In this section we recall a result which is crucial to interpret the forthcoming 
algorithms and to give convergence results. 

Theorem 2.1. Let (y, u) be the optimal solution of (V) and assume the following 
qualification condition 

There exists a bounded (in L2{Q) x L2(T)) subset MofWx L2(T) such 
that A{M) cKx U and 0 € Int2{V{M)) , 
where Int2 denotes the interior with respect to the L2(Q) x L2(T)-topology 

, and V(y, u) = {Ay - /, y\r - u). 
Then there exists (q,f) G L2(ü) x L2(r) and (/2i,/ü2) G A^W) x L2(T) such that: 

(H) 

(2.1) Ay = f  infl , y = u   onF , 

(2.2) (y - zd, y)n + {q, Ay)n + (f, y)T + (ft, AlV)L = 0 for all y eW , 

(2.3) a (ü-ud)=f-ß2 GL2(T) , 

(2.4) 
(ßi, Ai(y — y))L < 0 for all y such that Aiy G K 

(ßz,u — u)r < 0 for allu eU . 
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Proof. This is a particular case of a more general result that can be found in [2].   ■ 

As a specific example, L can be chosen as the set of linear finite elements with 
respect to a triangulation of fl and Ai   :W-^L can be the L2-projection. 

3. Lagrangian Algorithms 

In this section we turn to the numerical realization of the constrained optimal 
control problem (V). We shall combine the techniques from [1] and [4] augmenting 
the state equation as well as the constraints characterizing the feasible set D, to 
obtain well performing algorithms. 

3.1. Augmentation of the State Equation. First we recall an augmented Lagrangian 
algorithm based on the penalization of the state equation (see [3], [1] and the refer- 
ences therein). 

Algorithm A0 

• Step 1. Initialization: Set n = 0, and choose 7 > 0, q0 G L2(Q), r0 G L2(T). 
• Step 2. Compute 

{yn, un)   =    Arg min L7(y, v, qn, rn) 
A(y,u)€KxU 

where 

L^y, u, q, r) = J{y, u) + {q, Ay)n + {r,y - u)T + -\Ay - /|n + -\y - u|r 

is the augmented Lagrangian with respect to the state equation constraint. 
• Step 3. Set 

qn+1 = qn + Pi {Ay„ - /)    where px G (0,27 ] , 

rn+i =rn + p2 (yn\r - un)    where p2 G (0,27 ] . 
The analysis of this algorithm is rather standard, see [1] and the references there. For 
the convenience of the reader we provide a precise convergence result (which appears 
to slightly generalize the existing ones) and give a concise proof. 

Theorem 3.1. Let (y, u) be the solution to (V) and suppose that (H) holds. Then the 
iterates of Algorithm A0 satisfy 

(3.1) \yn - y\2n + a\un - ü\l + — \qn+1 - q\l + — \rn+1 - r\l 
lp\ lp2 

1 1 

+ (7 - j)\Ayn - f\l + (7 - f )\Vn ~ «nlr <  2^l?n ~ ?ln + ^K " ?\r 

for all n = 0,1,2,... . This implies 
00 00 00 

(3.2) £ \yn -yg + aY: K - «|r + (7 - y) E \AVn ~ f\l 
n=0 n=0 Z     n=0 

n °° 1 1 

+ (7 - ir) L \Vn - u"-\r < 5—|9o - Q\n + w~ko - r\r , 
2     n=0 2Pl lP- '2 

and in particular strong convergence of (yn,un) —> (y,u) in L2(Q) x L2(T), and 
boundedness of {(qn,rn)}.  If moreover p\ < 27 and p2 < 2j then (yn,un) —> (y,u) 
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inW x L2(T), and every weak limit (q, f) of (qn, rn) has the property that (y, ü, q, f) 
satisfies (3.3). 

Proof. From Theorem 2.1 we obtain 

(3.3) (f(y,u),(y,u)- (y,«))     + U A{y -y)) +(f,y -y - («-«)) >0 
V /nxr   \ /n   \ /i 

for all A(y,u) £ K xU. The solutions (y„, un) of Step 2 are characterized by 

(j'(yn,un),{y,u) - (y„,u„))       + (<7n+i,A(y-yn)) 

(3.4) + (Vn+1,y - yn - (u - u„))r + (7 - Pi)(^/n - /, A(y - yn)J^ 

+(j-p2)(yn-un,y-yn-{u-un)) >0 

for all A(y, u) G ifx[/. Adding (3.3) with (y, u) = (yn, u„) to (3.4) with (y, u) = (y, 
one obtains 

(3.5) (j'{yn, «n) - J'(y, Ü), (yn, un) - (y, u})       + (qn+i - q, Ayn - Ay) 

+ (r„+i -f,yn- un)T + (7 - pi)|i4y„ - /ß + (7 - Pi)\yn ~ «™|r < 0. 

Let us note the following equality 

(3.6) (a + pb,b)H = ^\a + pb\2H--\a\2H + ^\b\2H, 

for all elements a,b of a real Hilbert space H and all p£E. 
Due to (3.6) we find 

(qn+1 - q,A(yn -V))n= o^l^+! ~~ «I« ~ 2^g" ~ ^a + ^Ayn ~~ A^n 

and 

/ \ 1    1 -i2 J-    1 -|2    ,   P2 1 |2 (rn+1 -r,yn- un)^ = — |rn+1 - r|r - — |r„ - r|r + — \yn - un\T . 

Inserting these equalities into (3.5) we obtain 

\Vn - V\a + aK ~ «|r + 2TI**+I - q\h + ^lr"+i _ f lr 

+y l^/n - /In + f IWn - u"lr + (7 " Pi)l>%» " /In + (7 - P2)|y« - «X 

1    , .0 1   . _,2 

2/9l ZP2 

and (3.1) follows. Using a telescoping argument (3.2) is implied by (3.1). The ascer- 
tained convergence properties follow from (3.2), (3.4) and uniqueness of (y,ü,q,f). 
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3.2. Augmentation of the Non Smooth Constraints. The main remaining problem 
is the resolution of the auxiliary problem of Step 2 in Algorithm A0- This auxiliary 
problem can be written as: 

{yn,un)   =   Arg min L7{y,u) 
A(y,u)GD . 

To simplify the notation we omit to indicate the dependence of L7 on q and r. During 
Step 2 these functions are fixed. We set H = L x L2(T). Let <p be the characteristic 
function of the convex set D. Then, following [4], we define (for any c > 0) the 
function <pc: H x H —> R. by: 

(3.7) <pc(x, A) = inf { ip(x -0 + (A,Off + ||£IH } > 

where x = (y,u). Here ( , )H (denoting the ff-inner product) is given by (\,QH = 

(Ai,fi)n + (A2,6)r > with A = (*i, A2) and £ = (&,&). 
We recall some properties of the function <pc (for more details one can refer to [4, 2]): 

Proposition 3.1. For all x = (y,u) £ H and A = (Ai, A2) £ H 

C, „   ,     .   Al-.o        /, r-,   ,     ,   Ai 
<pc(x,\)    =    ±\y-PK(y + -±)\l+(\uy-PK(y + -±j)L 

+ °-\u - Pu(u + ^)\l + (\2,U- Pu(u + ^))r , 
c 

(3.9) <f/c(x,\)=c(y + ^-PK(y+-),u+^-Mu+^))  . 

wherePK (resp. Pv, PD)istheL (resp. L2(T), H) projection onK (resp. onU, D). 

Proof. See [2]. ■ 

We are going to use the following algorithm and a splitting variant to solve the 
auxiliary problem: 

Algorithm A\ 

• Step 1. Initialization: Choose \° E H and c > 0. 
• Step 2. Compute 

(yj,uj)   =   Avgm.mL7(y,u) + ipc(A(y,u),Xj) 
A(y,u)eWxL2(T), 

where <pc has been defined in the previous section. 
• Step 3. Set 

A'+1 = v?'c(A(2/V), AJ) = c(A1yi + ^-PK(A1yJ + )^),ui+^-Pu(uJ+^)), 

(see 3.9). 

The convergence of this algorithm under the assumption that L is finite dimensional 
follows from result in [4]. 
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3.3. Final Algorithm. We now write the version where Algorithm Ai appears as an 
inner loop in algorithm A0: 

Algorithm A 

• Step 1. Initialization: Set n = 0, and choose 7 > 0, c > 0. 
Choose (q0,r0) £ L

2{ü) x L2{Y) and A0 = (Aol,Ao2) elx L2(T). 
• Step 2. Choose fcn £ IN, set A° = An , and for j = 0,... , fc„: 

' (yLui)   =    Avg min Ly(y,u,qn,rn) + <pc(A(y,u),\i) 
(y,u)eWxL2(T) , 

K+l   =   (A^A^1)  with 

A^1   =   c[Aiyi + ^f-PK(Aiyi + ^f)}, 

A„ A„ 
AS1   =   c[ui + ^ - Pu(vi + -f)] 

End of the inner loop: 

An+i — An
n    , y„ — yn

n, un — wn™ . 

Step 3. 
kn 

qn+i =qn + Pi (T—T E A^n " /)    where ft G (°>27 1 ' 
Un. T 1 „-_n ■j=0 

rn+i =rn + p2 (T—TT I>nlr - <))     P2 £ (0,27 ; 
^77. T" J-  „-_n ■ J=0 

Theorem 3.2. Let (y, u) be the solution to (V) and suppose that (H) holds. Let 
(q, f, p) G L2(Q) x L2(T) x L x £2(r) &e an associated Lagrange multiplier. Then the 
iterates of Algorithm A satisfy 

fan. 
\Vn ~ y\a + a\un - u\l ■ 

2p 

(3.10) 

1 1 _|0    ,    kn + 1 . _|2 
-kn+i - 9ln + -^ Fn+i - r\r 

1 
+(7 - ^)\Ayn - f\l + (7 " f )K " 1/„|£ + ^|An+i - jS|ixLa 

for all n = 0,1,2,... . If kn is nonincreasing this implies 

(r) 

E \Vn - y\l + a E K - u\l 
71=0 ra=0 

(3.11) 
00 00 

+(7 - £) £14*. - /lä + (7 - ?) E K - vn\l 
k0 + 1 2        fc0 + 1 

< ——ko-g|n + 
2pi 2p2 

n=0 

1 
2c1 ro-rl^ + ^IAo-MUxt^r) 
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and the strong convergence of (yn,un) —> (y,u) in L2(fl) x L2(Y), and boundedness 
of {(q„,rn,Xn)}. If moreover pi< 2-y and p2 < 27 then (yn,un) -> (y,ü) in W x 
L2(F) and every weak limit (q, f, A) of{(qn, r„, An)} has the property that (y, ü, q, f, A) 
satisfies (2.1), (2.3). 

Proof. From (2.2), (2.3) it follows that 

(3.12) [J'(y,ü),(y,u)\       + {q, Ay)n + (f,y - u)r + [ß,Hv,«) =0 

for all (y,u) € W x L2{Y). The solutions {yj
n,u{) of Step 2 satisfy 

(j'(y>n,K),(y,uj)       + (qn + -^-(Ayi-f),Ay) 
V JnxT     V        fcn + 1 /n 

(3.13) +(7 - -j^T[)(M ~ /.^)n + (^ + i^i(»i - <)>V- u)r 

+(7 - irhM - < v - u)r + UiHyl <), K), Hv,«))    a   = o 
Kn + 1 V / LxL2(T) 

for all (y,u) e W x L2(r). Let us denote q~l := qn, r~l := rn and for j = 
0,... , kn, n e IN 

Sn = ^ + irx7XÄ-/)'   ^ = r„ + -^-]>>«-<)• 
K„ i- i- i=0 "mi"1 j=o 

From now, for convenience, we omit the indication of the norm since there is no 
possible confusion. From [4] it follows that ß = ip'c(A(y,u),ß). From (3.12) and 
(3.13) we deduce for j = 0,1,... 

J\yi,<) - J'(y, ü), {{yl <) - (y,«)) + (qn~l + f^i^n "/)-?> M - f 

+ (rt1 + j^(yi-<)-r,yi-<)+h-^1)\Ayi-f\2 

P2 
3-1 

kn ' i=0 

+ (yc(A(i£,<), A>) - <//c(A(y,Ü), fi), A(ylu{) - A(y,ö))   = 0 

-1 

where J^ := 0. From [4] it is known that 
»=o 

iffMvk* <)> A£) - ^c(A(y, Ö), A), A(^, <) - A(y, u) 
(3.14) V 1 1 
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for j = 0,1,... , kn. Inserting this inequality in the above equality and using (3.6) 
we obtain 

i   i        -i? i    7        -12   ,    kn + 11   ,•        _|9        "-n T J- I   ,_i        -|2 
|j£ - y|2 + a\ui - u\2 + ~2^-K - Qf - "^"l^    ~ «I 

-r^E(yi-<-wjn-<)+^(i^+1-/ir-i^-isr)<o) ftn + 1 ^ 2c 

for j = 0,1,... ,kn. Summing the above inequality over j and using the fact that 

k„ j-l fc     kn 

9 
j=l s=0 j=0 

we arrive at 

h\vi -y\2 + «l< - -I2) + %^l^" - «I2 + ^l# - fl2 

f)EI^-/la + (7-f)EI»ä-<la + ^l^+1-R|2 

Since (yn,Un) = (lfc,vfr), {qn+1,rn+1) = (cfr,rfr) and 27 > p1; 27 > p2 this implies 

_iO i —19 "'Tl  "T"   J- I —12 ^  "T"        I —12 
yn - y   + a\un - < + — |g„+i - g|  + — \rn+x - r\ 

Ipx lp2 

+(7-|)|Aj/n-/|2 + (7-f)|2/„-«rer + ^|Are+i-M|2 

<%^|fc-«|2 + %^|r»-*f + £|A»-£|2, 
2/9i 2p2 2.C 

which is the desired estimate (3.10). Summation over n implies (3.2). This ends the 
proof. ■ 

3.4. Adding Gauss-Seidel Spitting. Our final goal is the analysis of Gauss-Seidel 
splitting techniques to solve the auxiliary problems. A similar approach was taken in 
[1]. The splitting avoids the minimization of the auxiliary problem with respect to y 
and u simultaneously. The new algorithm is: 
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Algorithm A„s 

Step 1.   Initialization:  Set n = 0, choose 7 > 0, q0 G L2(Q), r0 G L2(T), 
M_I G £/". 
Step 2. 

yn = Arg min L7(j/, un_i, qn, rn) 

AlVGK 

un = Arg min L7(y„, u, gn, rn) 

ueU 

qn+1 = qn + Pi (Ay„ - f)  where px G (0,27] , 

r„+i = rn + p2 (y„|r - un)  where p2 G (0,7] . 

Step 3. 

Theorem 3.3. Under the assumptions of Theorem 3.1 the iterates (yn,un,qn,rn) of 
Algorithm A„s satisfy 

1 1 
\Vn - y\u + a\un - U\l + — \qn+1 - qfn + —-|r„+i - f|r 

Z/5! ZP2 

+ (7-£)l^n-/ß + (7-f)K-lfeß 
(3-15) p2 7 _ 

+ (" + y)K - Wn-ilr + 2 \Un ~ ölr 

1     , _i9 1     1 _i9        /7 — /?2M |2       7 I -12 
< ^—I?» - 9ln + T_lr» ~ rlr + (—l^—)K-i - 2/n-ilr+öK-i - «|r Zpi zp2 i & 

for all n = 0,1,2,... . This implies 

00 00 -     00 

E to» - f/ln + a E K - ölr + (7 - y) E l^y» - /In 

(3.16) + J E K - ynlr + (a + ?) E K - Un-M 
1 n=0 l    n=0 

1    1 i9 1    1 12 (7_/92), ,2        71 -12 

* 2piq° " ?1ä + ^'r° " ^ + ^^|U-1 ~~ V-llr + 2'"-1 - U|' • 
Proof. The optimality conditions for the two auxiliary problems of Step 2 give 

( Jy(yn,un-x),y - yn)   + (qn, A(y - yn)\   + (rn,y - yn) 

+l{Ayn - f, A(y - yn)J   + i(yn - M„_I, y - y„)   > 0 for all kxy e K , 

and 

(3.i7)       v r \ 
~l[yn — un,u — un)   > 0 for all u G U . 
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Adding these two inequalities and combining with (3.3) we obtain 

(j'{y„,un) - J'(y,u),(yn,un) - (y,ü)) 
V / nxr 

(3.18)   + (qn+1 - q, A(yn - y)j   + (rn+1 -f,yn- unJ 

+(7 - Pi)\Ayn - /In + (7 - p2)\lh - un\l + l(un-i -u„,y-yn)   < 0 . 

This expression coincides with (3.5) except for the last term on the left hand side of 
(3.18). Proceeding as in the proof of Theorem 4.1 we therefore obtain 

\Vn - V\a + a\un - ü\l + — |g„+i - q\2n + w~Vn+i - f\\ 
ipi zp2 

(3.19) +(7 - ^)\Ayn - f\l + (7 - f )k - u„\2T + 7(^-1 -un,y- yn)r 

< T~kn - q\h + 7^—\rn - r\r ■ 2Pl>™    *'» ' 1p '2 

The method of estimation of (un-i - un,y - yn)   is standard [3], but is given for 

the sake of completeness. First we note that 

u„-i-un,y - yn) = [un-un-i,yn-yn-i 

(3.20) +(un-un-1,yn~i-y-un^1+u) 
r 

-„(\un - u\l — \un-l - u\l - \un ~ «n-l|r)  ■ 

Using the optimality condition (3.17) for n and n — 1, with u = un and u = un_i 
respectively and adding the two resulting inequalities one arrives at 

-a|wn-un_i|r+fr„-rn_i,un-wn-ij  -^\yn-yn-i-{^-Un-i),u„-\-Unj   > ° . 

which in turn implies 

(3.21)   ry\yn-yn-uun-un-i) 

> (7 + a)|un -U„_i|r - P2\Un ~ Un-UVn-l -Un-1 

for n = 1,2, Inserting (3.21) into (3.20) implies that 

7lVi -un,y-yn)     >   (a + -)\un - un-i\l 

+(7 - P2)[un - u„-i,yn-i - un^i 

7/1 -i2        1 -|2\ +-{\un - u\r - \Un-i - u\r) 
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^    Pi -7i |2   ,   /     ,   P*\\ |2 
>      2 l2/"-l _Un-l|r + (0;+ YJPn-Un-l|r 

(3.22) ■I< +TT(I
U

« ~ U
\T ~ \un-l ~ u\r) 

where p2 < 7 is used. Inserting (3.22) into (3.19) the desired inequality (3.15) follows. 
The second inequality in the claim of the theorem follows by a telescoping argument 
from the first one. ■ 

Once again, we may use algorithm Ai to solve the first sub-problem of Step 2. The 
second one is easily solved directly, see Remark 3.1 below. For convenience we shall 
henceforth delete the index 1 in the notation of the state component of the multiplier. 

Algorithm AGS 

• Step 1. Initialization: Set n = 0 and choose 7 > 0, c > 0. 
Choose (q0,r0) G L x L2(T), X0 G L2(Q) and u_i G L2(T) . 

• Step 2. Choose kn G IN, set A° = Xn, u~l = un^i and for j = 0,... , kn 

yJ„      =    Arg min L7(y, <"\ qn, rn) + tpc(A(y, u^1), {X{, 0)) 
yew 

K+1   =   c[Aiyi + ^-PK(Aiyi + ^)}, 

K      =    ArS min Li(vL u> Qn, rn) 
u&U 

End of the inner loop: An+i = A£"+1, yn = y*n , un = u£". 
Step 3. 

Q.n+1 
Pi 

kn + J- j=o 
TE(^-/)>   where Pl G (0,27] 

I VH-I = r„ + TT-TT H(Vn\r ~ <)>   where p2 G (0,7] . 
™77. ~T J-  „-_n 

Remark 3.1. The second minimization problem is indeed equivalent to 

aud + rn + -yyl 
u3

n   =   Arg min 

u G U , 
CK + 7 

that is ul is the L2(T)-projection of    on U. n v ' a + 7 

We may now end this section with a convergence result for Algorithm AGS. 

Theorem 3.4. Let (y, u) be the solution to (V) and suppose that (H) holds.   Let 
(q,f,ß) G L2(fl) x L2{T) x L x L2(T) be a Lagrange multiplier associated to the 
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state equation and the state constraint. Then the iterates (y„,un,qn,rn) of Algorithm 
AGS satisfy 

,o      / 7M I2     *n + l| -i2   ,   fc» + l| -|2 

2;| n       Ir      2Pl   
IOT^     "41,    2p2 

+(7 - ^)\Ayn - f\l + 1-^1\un - yn\l + ^|A„+1 - ß\\ 
(3'23) <    kn + hn fl-|2+^±i|r    _r-,2 

+—|An - ß\l + 1-^p-\un-1 - yn_i|^ + |K-i - ölr 

/or aZZ n = 1,2,... . // fc„ is nonincreasing this implies 

f:(\yn-y\2n + a\un-U\l + (7-^)\Ayn-f\l + ^\un-yn\l)< 

^Ift-^ + ^lri-^ + ^lAx-Pli + ^ltfo-^ + lk-^. 

Proof. We combine the techniques used in the proofs of Theorems 3.2 and 3.3 which 
allows to omit some details. Once again we use the optimality conditions issued from 
Step 2 of Algorithm AGS . The iterates (y£,<) of Step 2 satisfy, for j = 0,..., kn, 
for all y G W 

(^.<-1).»))n+(*. + tTI<^-/)^)n 

(3.24) +(7 - kf^M - f,Ay)a + (r„ + ^te - <-1),v)r 

+(7 " j^i)(»i " <'*>y)r + (<i(AiJÄ, ^), Aiy))L = 0, 

and for all u € £/ 

(•MX).« - <))r - (*•»+^i(»i - <)'u - <)r 
(3'25) - (7 - j^Xs/Ü " <,« - Or > 0 • 

Relation (3.12) implies 

J'{y,u),(y,u-u))       +(q,Ay)Q 

(3.26)      * 
+ (f,y-(u-u))r+U,kiv)      ,,^° 

\ / LxL2ir) 
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for all (y,u) eWxU. Combining (3.24)-(3.26) and (3.14) of the proof of Theorem 
3.2 implies 

i   i        -i2    ,       i    i        -|2    ,   ""«   '       I   i        -12 ra   '       I   7-1       ^|2 
l*£ - V\a + aK ~ «lr + ""^"l^ " «I« ~ ~^^^Qn    ~ g'n 

+ (7_2(fcn + l))|Ay"     /ln+    2p2   
K     r|r        2p2   

K        r|r 

+ (7"2lfcf^)|y"_U"l'-^£(Ay"_/'A?/""/)n 

- r^T&n - « " <)r + ^d^+1 - Ali - k - Ali) 

for n, j = 0,1,... ,kn. Summing the above inequality over j we arrive at 

hWn - 9\M< - ü\l)+k-~^\<lkn  - 9lä + ^l* - ^ +^k+1 - ß\l 

+(7-Y)EI^-/ln+(7-f)EI^-<l^+7E(<-<-1,^-y 
z   j=o z   j=o j=o x 

fcn+1. _|2 fc„+l. _|2 1  h0        -|2 
< -2^-|fc - Q\n + -2^-lr» - r|r + ^|A„ - ML • 

Now we estimate (u3
n- u^"1, yJ

n - y)   as in the proof of Theorem 3.3. We obtain, 

for j = 1,2,... and n = 0,1,... 

7(<-X - < y-y£)v> «k - «r'lr - ^(12/r1 - <_1lr + k_1 - ä|r - k - «lr) • 

A similar calculus provides the estimation of \u°n - u^1, y°n - y)   for n = 1,2,... 

7 
(3.27) 

(V-<,y-y°)r>   (a + ^K-^l^ + ^lyn-x-^1!2 

.l\u° -ü\l -1\u'1       »-12 

We henceforth assume n > 1. We obtain 

(3.28)        + ^K - wir - ?K-i " «lr + a £ |< - <"1|2, 
z z j=i 

-1 hiyt1 - <_1ir+k-1 - ^ - k - ^). 
ZJ=I 
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We finally get for kn > 1 

Ld^n " Win + a\ui - wlr) + -^—|«n+i - «In + ~^— K+i 
j=o 

+ f |An+i - fill + (7 - f) E 1^ " /In + V^ £ ^ " <'r + ^" " ßl* zc z   j=0 z     j=o z 

.  Kn T J-1 _|2    ,    "<n T J- I -|2 
< -^—-k - «In + -S-— K - r\r 

+ 2c'An ~ ^ + ~2~^'y" ~ 2/™^1'" + 2 'Mn_1 ~ Ö'^ ' 

Since p2 < 7 we deduce that if fcn > 1 

i — 19 I — i9 **Vl "T"  -^ i _|9 "'71 ~T"  -L I —19 
2/n - y n + a\un ~ AT + -7> l«n+i - «In + -ir—Vn+i - r\v Zpi Zp2 

+ (7 - f )l^n - f\h + 1^1\yn ~ Un\l + ^|An+1 - fig + l\un- ü\l 

Kn + 1 . _|2 Kn + 1 . _|2    ,     J-   I > -|2 

7 — 02, 12        71 -12 
+ —2—l2/n-i-«n^i|r +öl""-1 ~ulr- 

Using (3.27) the same estimate follows for kn = 0. The final claim again follows with 
a telescoping argument. ■ 

4. Numerical Experiments 
4.1. Implementation. Numerical experiments were carried out for one and two di- 
mensional problems but we present only a ID-example. Since Algorithm AGS is the 
simplest for implementation we have used it for our tests. The discretization of the 
problem was done with finite-differences discretization schemes. The size of the grid 

was — so that L = MN+1. A was chosen as the discretization operator with respect 

to the given equidistant grid. 
The main difficulty that remains in applying Algorithm AGS is given by the (un- 

constrained) minimization with respect to y. This was done via the adjoint state 
equation and results, for fixed u, q and r in the resolution of 

A*p = y-zd + c[y-\ PK{y + -)]  in tt, p =0 on T , 

(41) \ A        r     Q + P   ■ °r, °r      1   dp 1 Ay = f-^—^mQ,y = u-- + —^-    on T , 
7 7     7 ovA, 

dv 
for p and y.   Here -    denotes the conormal derivative of p with respect of A* 

dvA, 
(which is the adjoint operator of A). The control function was computed using the 
TOO       ■   4.-       rr + aud + <yy L-proiection of   on U. 

a + 7 
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All numerical tests were carried out on an HP workstation using the MATLAB© 
package. The required accuracy and stopping criteria were set to 10~6. 

4.2. ID-Example. In this example we chose Q =]0,1[ and N = 30, A = —A and 
f(x) = -{x + 2) exp(x), zd = -1, a = 0.1, ud(0) = -2, ud{l) = 1, U = [-3,3] and 
K = {Y el |  -1.1<Y <1 }. 
Note that zd is quite close to the boundary of K. 
In fact, as can be seen from Figure 1, the lower bound on the state is active.  The 
active set is a singleton.   In view of the fact that the influence of the boundary 
control at x = 0 and x = 1 is restricted to the superposition of straight lines to the 
uncontrolled state, this is not surprising. 

Solution forud=[-2,1]andzd=-1 

Figure 1 

c 7 kn (constant) l|Ay + /||oo l|y-ulloo n CPU units min[y-(-l.l)] 
10 1 10 4.8 e-07 4. e-07 58 1 4. e-10 
10 1 1 9.3 e-07 6. e-07 154 2.17 2.5 e-06 
10 1 100 2.2 e-07 5. e-07 13 1.35 -2 e-09 

100 10 10 6.2 e-07 9. e-07 95 1.01 -1.3 e-11 

Table 1 

One of the main questions concerning the class of algorithms that we analyzed is 
the choice of the parameters pi, c and 7. From Table 1 we conclude that while the 
choice of the parameters certainly has an influence on the convergence properties of 
the algorithm, there is a wide range of parameters values for which convergence is 
achieved numerically, for this and other examples that we tested. In all calculations 

7 1 we chose pi = 1.    Some tests shows that the ratio — = — is a good one.   For 
c 10 

(c,7) = (1,1),   (c,7) = (100,50),  (c,7) = (1,0.5) (all with kn = 10 for all n), 
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convergence is achieved but it is slower than for those pairs that are presented in 
Table 1. Prom that Table, as well as from other tests, it can also be seen that 
the auxiliary problem should be solved sufficiently accurately, before the Lagrange- 
multipliers (q, r) for the state equation and the boundary condition are updated (see 
kn = 1). The values (0,7) = (10,0.1) still with # = 1 led to divergence. This is not 
unexpected in view of the result of Theorem 4.5 which requires p2 < 7. 

The numerical values for J and the control at the minimum are: 

J = 1.5862 10-1 and ü(0) = -9.9573 10_1, ü(l) = 2.6314 10"2 . 

4.3. Conclusion. The augmented Lagrangian algorithms with splitting into state and 
control variable can effectively be used to solve state and control constrained opti- 
mization problems. For the first order methods that are presented in this paper the 
auxiliary problems in the inner-loop must be solved sufficiently accurately before the 
Lagrange-multipliers of state equation and boundary condition are updated. Ap- 
propriate choices for the penalty parameters (here c and 7) and the step lengths pi 
for the dual variables are easily determined since the algorithm are not particularly 
sensitive to them. 
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ABSTRACT. We study an approximation of the boundary control problem for the heat equa- 
tion over a finite horizon. Our goal is to obtain an approximation of the value function and of 
the corresponding "locally optimal" trajectories. We examine here a time discretization also 
proving some a priori estimates of convergence for the value function of the time-discrete 
problem. Some hints are also given for the construction of a fully discrete scheme. 
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1. Introduction 

We deal with the finite horizon control problem for a system governed by the heat 
equation focusing our attention on its numerical approximation. In particular, we 
will examine in detail the case of boundary controls. We refer to Lions [17] for the 
theoretical framework of the continuos problem. 
It is well known that via the Pontryagin's maximum principle, one can characterize 
the open-loop solution in terms of a coupled system involving the state y(u) and 
the adjoint state p(u) (u is the control). In this formulation the adjoint state satis- 
fies a backward heat equation in [0, T] having y(x, T; u) as initial condition so that 
the numerical solution of the coupled system requires a long iterative process. This 
approach has been followed by Hackbush ([13], [14]) who has applied the multigrid 
technique to obtain the solution of the system describing the necessary conditions for 
optimality. Note that the approximation of the system of necessary conditions re- 
quires a good initial guess for the multipliers (the adjoint states) to start the iterative 
procedure and to guarantee a local convergence to the solution. Searching for the 
initial guess is often one of the more difficult tasks in that approximation method. 
Having in mind those limitations, we consider here a different approach where Dy- 
namic Programming plays a role also in the construction of the approximation scheme. 
The main goal is to reduce the global complexity of the algorithm and to avoid the 
cumbersome solution of a Hamilton-Jacobi type equation in the whole space of initial 
data (which in our case would require the solution of a nonlinear PDE in L2(Q,)). 

This work has been partially supported by the Ministry for University and Scientific Research 
(MURST Project "Analisi Numerica e Matematica Computazionale"). 
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Our method is based on a backward-forward procedure where we try to compute a 
trajectory minimizing the pay-off in a neighbourhood of a reference trajectory (which 
is assumed to be given). Prom this point of view this paper is close to the numerical 
experiments presented for finite dimensional control problems in [1]. 
We will establish convergence for a time-discrete scheme and we will also give some 
hints for the construction of the fully discrete algorithm based on a space discretiza- 
tion (by finite elements or finite differences). A similar approach has been followed 
by Ferretti for distributed and boundary control problems ([8], [10]) without state 
constraints and localization around a trajectory. Among the huge amount of liter- 
ature on the control of parabolic type equations we quote the paper [2] where the 
approximation of the linear regulator problem is considered and [16] where abstract 
convergence results for approximation methods have been given mainly for the linear 
quadratic problem (see also the reference therein and [15]). More recently Banks 
and Ito [3] have studied the numerical aproximation of boundary control problems 
by means of augmented lagrangian techniques. 

The paper is organized as follows. In Section 2 we set up the problem, introduce our 
notations and prove some useful properties of the value function for the continuous 
control problem. Those properties are rather important for the construction of the 
discretization scheme and also play a role in the proof of the dynamic programming 
principle which is given in the Appendix. The time discretization is treated in Section 
3 where we prove a discrete Dynamic Programming Principle which will be used to 
obtain the approximation scheme and to prove our convergence result. Section 4 is 
devoted to the presentation of the basic ideas for the numerical algorithm. 

2. Some preliminary results for the continuous problem 

Let O be un open subset of M.n, T = 80. and t0, T be two real numbers such that 
T > t0- We set Q = Q x (t0,T) and £ = T x (t0,T). 
We will say that T is regular if it is piecewise C1 in the sense given by the definition 
of [18, p. 25]. 

Let E be an Hilbert space, we will use the following spaces 

rT 
L2(t0,T; E) = {h: [t0, T] —> E such that   /    || h(s) ||| ds < +00} 

Jta 

W(t0, T) = {h£ L2(t0, T; E) such that ^ e L2(t0, T; E')} 

where the derivative dh/dt should be understood in the distributional sense. We will 
consider a boundary control problem with Neumann condition for the heat equation: 

(2.1) 

fty(x,t) - Ay(x,t) = g(x,t)      in Q 

£y(x,t)=u(x,t) onS 

y(x, t0) = 7]{x) in Q 
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where 77 is given in L2(Q), g G L2(tQ,T;Hl(tt)), and the controls u belong to U = 
L2(E), i.e. we start investigating the problem without constraints. Later on in this 
section we will also introduce some constraints on the control space. 

We will always consider solutions of (2.1) in the weak sense. We will denote that 
solution by yv(x,t;u) and when it will be possible without ambiguities we will also 
use the short notation yv(t; u) or yv{t)- 

In order to have existence and uniqueness for the solution of (2.1) for every fixed 
uEU one can apply the standard results for the heat equation (see f.e. Theorem 1.2 
p.102 in [17]). The solution depends continuously on the data and lives in W(t0,T). 
Sometimes we will refer to L2(Q) as the space of observations, i.e. the space where 
the solution lives for every fixed t in [io,?1]- 

In order to simplify our notations, let us define 

u(t) \\l= / I u(x,t) |2 dx , 

|| y(t;u) f= j I yn{x,t;u) |2 dx . 

The final time T being fixed, for every initial condition (rj, t0) and for any control u 
we define the pay-off: 

(2.2) J(rj, t0,u) = [T f(yv(t; u), u{t)) e^-^dt + ^„(T; u)), e^"^ 

where / : L2(ü) x L2(T) -» E, ip : L2(ü) -> R and A > 0. Note that the discount 
factor e~A('"'o) appearing in the functional (2.2) is usually included to up-date all 
the cost at the initial time (when the decision has to be made) and to decrease the 
costs over long time intervals. 
We will make the following assumptions: 
(a) there exists a constant Bf such that 

(2.3) \f(y,u)\<Bf,    forany(y,u)GL2(Q)xL2(r), 

(2.4) / is continuous with respect to (y, u); 

(b) there exists a constant C/ > 0 such that for any z,w & L2(Q) and for any 
u e L2(T), 

(2.5) \f{z,u)-f{w,u)\<Cs\\z-wl 

(2.6) / is convex with respect to (y, u); 

(c) there exists a constant B^, such that 

(2.7) \il>(y)\ < Bf,    for any y G L2{Ü); 

(d) there exists a constant C$ > 0 such that for any z, w G L2(Q) 

(2.8) \ip(z)-i)(w)\<Ci,\\z-w\\, 

(2.9) V is convex. 
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We want to minimize J, i.e. we want to find an optimal control u&U such that 

(2.10) J(r), t0, u) = inf J(ij, t0, v). 

The value function for our problem is defined as 

(2.11) v{r),t0) = infJ(rj,t0,u). 

Definition 2.1. The system (2.\) is said to be controllable if for u G U, the observa- 
tion y(T; u) spans a dense subspace in the space of observations. 

For the proof that our system is controllable when U = L2(E) see [17, p. 207]. It 
is clear that, in general, the existence of an optimal control attaining the minimum 
of J is not guaranteed. In order to prove it we need some additional assumptions. 

Theorem 2.2. Let (2.3), (2A),  (2.h), (2.Q),  (2.1),  (2.%),  (2$) be satisfied.   Let 
Uad = {u £ U :\\ u ||L2(E)< R} and assume that f(y,-) «s continuous for any y G 
L2(ft). 
Then, there exists a control u G Uad such that 

(2.12) J(r),t0,u)=   inf  J(r],t0,v). 

Proof. Let us define <f> : Uad —> R as 4>{u) — J(rj,t0,u). In order to get the result 
we will apply Corollary III.20 in [6] (for readers convenience its exact statement has 
been included in the Appendix) so let us check that all the assumptions are satisfied. 
It is easy to see that Uad is a closed, bounded, convex subset of the reflexive Banach 
space £2(£). By (2.3) and (2.7) we have that <f> ^ +oo. 
To prove the convexity and the continuity of <j> we first observe that for any a G (0,1) 
and for any u, v G Uad, 

(2.13) yv(x, t; cm + (1 - a)v) = ayv(x, t; u) + (1 - a)yv{x, t; v). 

In fact, we can write yn(x, t; au+ (1 - a)v) = a(x, t) + bau+(i-a)v(x, t) where a(x, t) 
is solution of (2.1) for u = 0, i.e. 

fty(x,t) - Ay(x,t) = g{x,t)      in Q 

(2.14) £y(x,t) = 0 onS 

y(x,t0)=T](x) in ft 

and bau+(i-a)v(x,t) is solution of (2.1) for g = 0 and 77 = 0 with the control au+(l- 
a)v, i.e. 

dt 

(2.15) 

ay{x,t)-Ay(x,t)=0 in Q 

dv y(x,t) = au+ (1 — a)v       on E 

y(x,to) = 0 in ft. 

By linearity of the equation we have that bau+(i-a)v(x, t) = abu(x, t) + (l-a)bv(x, t) 
and this give us (2.13). 
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By the convexity of ip and / and by (2.13) we can easily prove that <j> is convex. 
Let us prove that (f> is lower semicontinuous. 

Let un 6 Uad be a sequence converging to u in £2(£)- By the weak formulation of 
the heat equation and exploiting the linearity of the dynamics we get the following 
estimate 

(2.16) || yn{t;u) - y^Un) \\<\\ u-un \\L2{Ti)  . 

The continuity of ip(yn{T;u))e~x{-T"t°> with respect to u then follows by (2.8) and 
(2.16). 
Let us examine the integral term appearing in the definition of <j>. 

[ f(yv(t;u),u(t))e-Xit-to)dt = 
Jto 

= fT[f(yr,(t; «),«(*)) - /(*/„(*; o), «(t))]e-^-*°)dt ■ 
Jtn 
r 

(2.17) Jt0  T 

+ f [fiVvit; 0), «(*)) - f(yv(t; 0), 0)]e-*-^dt + 
Jto 

+ f f(yv(t;0),0)]e-Kt-to)dt. 
Jto 

By (2.16) and the Lipschitz continuity of f(-,u), we get 

/   [f(yv(t;u),u(t)) - /(y,(t;0),u(t))]e ai ^ uf \\ u ||L2(E) 
-/to 

]e-Kt-to)dt <Cf\\u 

Note that the continuity assumption on f(y, ■) implies, by the Fatou's Lemma, that 

I(u)= f /(|/,(t; «J.-Je-^'-^dt 
Jto 

is a lower semicontinuous function over Uad. Then, we can conclude that (/> is lower 
semicontinuous over Uad since the last term in (2.17) is constant with respect to u. 
The proof can be completed simply applying Corollary III.20 in [6].   D 

Assuming that / and ip are strictly convex, we can conclude that the optimal 
control is unique. Note that hypothesis (2.6) is fullfilled when the running cost / has 
the form f(y,u) = f\(y) + /z(u) with /i and /2 convex. 

The Lipschitz continuity of the cost function with respect to the initial data is 
established in the next theorem. 

Theorem 2.3. Let Q, be a bounded open set with a regular boundary and let the as- 
sumptions (2.5) and (2.%) be satisfied. Then, there exists a constant C > 0 such that 
for any u inU 

(2.18) \j{ri,to:u)-J{ß,t0,u)\<C\\v-ß\\ ,        Vy),^L2(n). 

Proof. We can write yv(x,t;u) = av(x,t) + b(x,t,u) where an{x,t) is the solution of 
(2.1) for g = 0 and u = 0, and b(x,t,u) is solution of (2.1) for r\ = 0. 
The map av(x,t) = A(t)n(x) is linear in 77 by linearity of the equation.   Theorem 
7.2-2 p.161 in [18] gives for g = 0, the continuous dependence of the solution with 
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respect to the initial data. We can conclude that it exists a constant Ca > 0 such 
that 

(2.19) \\A{t)r,(x)\\<Ca\\v\\   ,Vie[t0)T]. 

Let us denote by yv(x, t; u) the solution of (2.1) and by y^x, t; u) the solution of the 
same system with initial data ß{x). 
The linearity of A and the inequality (2.19) imply 

(2.20) || y^C*;«) — %.(*;«) 11=11 ^(*)(»7 — A*) ll< C- II »7 — A* II »       Vte[to,T\. 

Recalling the definition of the pay-off, by (2.5) and (2.8) we get 

| J(ri,to,u) - J(ji,to,u) | < [T \f(yv(t;u),u(t)) - f(ytl(t;u),u{t))\e-x^dt + 

+ \Hyv(T)) -Hy,(T))\e-x{T-to) < 

< [T Cf || yn{t) - yß(t) || dt + C* || y„(T) - yß(T) \\ . 
Jto 

By (2.20), we can conclude that there exists a constant independent from u, C = 
CfCaT + C^Ca, such that 

(2.21) \J(ri,t0,u)-J(ß,t0,u)\<C\\ri-ß\\  . 

D 

As an easy corollary we get the Lipschitz continuity of the value function with respect 
to the initial data. 

Corollary 2.4. In the same hypotheses of Lemma 2.3 there exists C > 0 such that for 
any rj,ß G L2(fl) we have 

(2.22) \v(r),t0) -v(ß,t0)\<C\\rf-ß\\. 

We state now the Dynamic Programming Principle which will give a characteriza- 
tion of the value function also useful for numerical purposes (see the Appendix for 
the proof). 

Theorem 2.5. Let the value function be defined as in f2.11j. Then 

(2.23) v(V,t0) = mi\rf(yv(t;u),u(t))e-x^to)dt + v(yv(T), 
u&J lJt0 

for every T, to <T <T. 

It is well known that the Dynamic Programming Principle gives a characterization 
of the value function where the value at the initial condition v(rj,t0) depends on 
its value at the point yv(r) belonging to the optimal trajectory. This is the basic 
principle of optimality for the trajectories. This principle is also useful to derive the 
Hamilton-Jacobi-Bellman equation giving a characterization of v in terms of a partial 
differential equation. In what follows we will use a discrete version of this principle 
(Theorem 3.1) to get a semi-discrete approximation scheme for the value function. 
Moreover, (2.23) and its discrete version will play an important role when proving 
the convergence of that scheme to the value function of our problem. 

r)e-A(r-*o) 
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For the numerical approximation, we are interested to a particular choice of the 
cost function (2.2). Note that an explicit dependence on t can be easily included in 
the running cost. We will take then 

(2.24) f(t, yv, u) =|| u(t) \\l + || yn{t; u) - £{t) ||2 

where £ is a given function from L2(Q) in R and 

(2.25) tf(%CO) =11 Vv(T) - zT ||2 

where zT is a given function from L2(fl) in R. 
Moreover, we also want to restrict the space of admissible controls and of the initial 

conditions assuming that 

(2.26) u G Uad = {u e U such that  || u(-,t) |U=(r)< R for any t e [t0,T]}, 

(2.27) ijeif = {/i£ L°°(ft) such that  || ß !!«,< M}. 

Note that the restriction on the controls which appear replacing U by Uad may 
imply the loss of the controllability property for our dynamics. However, under the 
assumptions of Theorem 2.2 there exists a minimum for the pay-off. In practice, we 
can think that £(*) is a trajectory starting at 77 and reaching a neighbourhood of our 
terminal state ZT obtained by an analysis of the controllability problem or by some 
experiments. It is what we know about the problem before starting the optimization 
process. We want to minimize the pay-off given by 

/ 
Jti 

«(*) lib + II Vn& «) - C(t) f e-A<'-«°>di+ || yv(T) - zT f e" 
Jto 

Note that the term 

/T||%(i;W)-C(i)l|2e-A(*-i0W 
Jtn 

has been added in order to penalize the L2-distance from ( in the interval [to, T\. We 
will come back to this point in the last section, where we will explain the algorithm 
giving more details. 

In the following Lemma we will show that under some restrictive hypoteses we can 
apply Theorem 2.3 to the pay-off J corresponding to (2.24), (2.25) so that our value 
function is Lipschitz continuous with respect to the initial data. 

Lemma 2.6. Assume that tt is a bounded open set with regular boundary, and that 
(1.1&) and (2.21) hold true. Then (2.5) and f2.8,) are satisfied. 

Proof. Let us start from the weak formulation of the heat equation. After some 
calculations one can obtain the following estimate 

(2.28) || y{t;u) ||2<|| -q f +(l/a) || g \\lHo,T.m) + || u ||22(E) 
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for all i in [t0,T] (a > 0). Then, (2.26) and (2.27) imply 

(2.29) || y(t; u) \\< K , for all t G [to,T\ , 

where K = (M2meos(fi) + (1/a) || g \H,(olT;m) +#2)1/2- 
Fix rj and fi in L2(ü), t in [t0,T] and u in Uad. By the definition (2.24) we get 

f(yv(t;u),u(t)) - f(y»(t;u),u(t)) =11 »,(*;«) ~C(t) II2 - II %.(*;«) -C(t) ll2< 

<ll V^u) - y^t-u) || { || yv{t;u)-yß(t-u) || +2 || {/„(t;«) - C(t) || }• 

By (2.29) we have 

/(^(t; u), u(t)) - f(yß(t; u), «(*)) < [2Ä" + 2(X+ || C ||)] II y„(i;«) - !/#*(*;«) II  • 

Inverting the roles of ß and 77, after some calculations we get 

\f(yri(t;u),u(t)) - f(yß(t;u),u(t))\ < Cf \\ yv(t;u) -yß(t;u) \\ 

where Cf = [2K + 2(K+ \\ C||)]. This proves (2.5). 
The proof of (2.8) is similar so we skip the details.     □ 

By Theorem 2.2, one can easily see that under the same hypoteses of Lemma 2.6 we 
have existence and uniqueness of the optimal control for the particular cost functional 
defined by (2.25) and (2.24). Note that the proof of the the Dynamic Programming 
Principle is still valid also when we assume (2.26) and (2.27) (see Appendix). 

3. Semi-discretization and convergence 

Let us introduce the discretization in time of our problem. For the sake of simplicity 
we will consider only the case when the time-step is constant, but the results can 
be extended to a variable time-step using standard arguments. Given iVeNwe set 
At = [T - t0]/N and tn=t0 + nAt for n = 0,..., N. 

Let the set of controls U be replaced by the set of admissible discrete controls 
Ü CU. The set 0 will play an important role in our discretization. Just to fix ideas, 
one can imagine that 0 is some sort of finite representation of U more suitable for the 
construction of the algorithm (we will come back to this point in the next section). 

We replace our dynamics (2.1) by a discrete time dynamics obtained, for example, 
by an explicit Euler scheme 

(3.1) 

f y{x, fn+i) = y{x, t„) + At [Ay(x, tn) + g(x, tn)] 

£y{x,tn) =u(x,tn) 

y(x,t0) = ??(x) . 

The solution will be denoted by yn{x, tn; u) and, whenever is possible, we will use the 
short notations yv(tn; u) and yv(t„), for every n = 0,..., N and for every ueÜ. 
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For any n0 £ {0,..., N — 1} we define the pay-off corresponding to the discrete 
time dynamics (3.1) as 

(3.2) %,tno,u) = At £ f(yv(tn),u(tB))e-A('"-to)-+ ^»„(T;u))e~x^-^ 
n=no 

and for n0 = N we define, 

(3.3) J{rj,tN)=ij{r]). 

The corresponding value function is 

(3.4) £(?7,i„0) = inf J(rj, tno,u),        n0. G {0;..., iV}. 
ueu 

We will construct our scheme by means of the following discrete version of the dyna- 
mic programming principle. 

Theorem 3.1. Let the value function be defined by (3A).. Then, 

(3.5) v(V, tno) = inf Ut J2 /(%&,), u(UKA(tn~'no)+^(U ^KA('P~'"o) 

ueU I       n=no ) 

for every integerp, no <p < N. 

Proof. Let us denote by w(r),tno) the right-hand side of (3.5). 
We consider two cases. 
1) Let p = N. We have 

(3.6) w(V, U = inf JA* £/(&(*»), «(iJje-^^+S^tr),^-4»»)} . 
uSt/ (      n=no J 

By the definitions (3.4) and (3.2), we have 

v(yv(T),T) = inf J(yv(T),T;u) = inf ^(y„(T)) , 
ueu ueu 

so that (3.6) coincides with the definition of value function. 
2) Let p < N. We divide the proof into two parts, 
a) v(rj,tno) >w(r],tno). 
Let us fix a control u, by (3.2) we have 

p-i 

J{V,tno,u) = At £ f{yn(tn),n(in))e-A(*"-t"o) + 
n=rio 

+ A^1/(^(i™),«(in))e-A(T-*"o) + V(%(T))e-A(T-'-o) . 
n=p 
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Defining \i = yv(tp;u), the uniqueness of the solution of (3.1) implies yv(x,tn;u) = 
yß{x,tn;u) for every tn > tp. Then, 

P-I 
J(V,tno,u) = At £ /(y,(i„),u(in))e-A(t"-*"°) + 

N-l 

+ AtJ2 f(yß(tn),u(tn)>~X{tn~tno)+^(UT))e-X{T-tno) = 

= At £ ttUQMtnVe-*"-^ + JOMp^)^-^ > 
n=no 

n~no 

by definition (3.2) and (3.4). Taking the infimum over U we have 

v(r,,tno) > inf j At £ f(Utn)Mtn)>-X{tn-tn°)+VMe-x(t''-tn°) \ • 
ueU I n=no ) 

b) v(r),tns) <w{r),tno). 
Fix ü e Ü let ß = yv(tp; u). For any fixed e > 0 there exists a control ue such that 

(3.7) v(ß,tp)+e> J(ß,tp,ue) . 

Let us define the control 

_/     , \       I   u[x, tn)    tnQ < tn < tp-i 
U{X,Tn)-y  Ue(XjQ     tp<tn<T. 

We first note that the uniqueness of the solution of (3.1) implies 

(3.8) yv{x, tn, u) - | ^ in. Ue)   ip < tn < T . 

Recalling the definitions ü, (3.2), (3.8) and the inequality (3.7) we have 

P-I 

v(V,tn0)     <     HV,t„0,ü) = At  ^   fiUt^Mtn))*-*71^ + 

4-AtX;1/(%(*;«), «(in))e-A(t"-t"°) +^(%(T))e-A(T-4"o) = 
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=   At PJ2 /(£„(*; «). «(in))e-A(t"-*"°) + 
n=rio 

p-i 

=   AtJ2 /(%(t;ü),ä(t„))e-A(i"-*"o) + J^tp.u^e-^-*"«) < 
n=no 

P-I 

< At £ /(y„(t;ü),«(tn))e-A(i"-t"o) + (0(^tp) + £) e^-*"^. 
n=no 

For e tending to 0 and taking the infimum over üsC/we end the proof.   D 

Let us turn now to the proof of convergence. The basic idea is simple: coupling an 
Euler discretization scheme for the dynamics with a quadrature formula (rectangles) 
for the cost we can get a reasonable approximation of the value function. Two main 
questions have to be clarified. Which conditions on the two discretization schemes 
guarantee the convergence to the value function of our approximation scheme ? How 
accurate is that discretization scheme ? 

To obtain results in both directions we make the following assumptions: 

(HI) For any 77 G K, u G Uad, 0 < At < T -10 and £ G [t0,T] there exist u G Ü 
and two positive constants C\ and C2, such that 

(3-9) II !/,(&«)-&(£,2)ll<Ci(At)2 

(3.10) \Atf(yv(OMO>-X{^to) ~ rAtf(yv(t),u(t))e-X(t-to)dt\ < C2(At)2 

(H2) For any 77 G if, S G Ü, 0 < At < T - t0 and £ G [f0,T - At], there exist 
■u G f/ad and two positive constants Ci,C2 such that (3.9) and (3.10) hold. 

Note that the constants C\ and C2 appearing in (3.9) and (3.10) are independent of 
any other variable, so that the above inequalities provide uniform estimates for the 
time discretization of the dynamics and of the cost functional. 

The following result gives an estimate of the L°° error related to our time dis- 
cretization. The proof follows the lines of Theorem 3.1 in Falcone-Ferretti [11] where 
a similar estimate is obtained for a finite dimensional control problem. 

Theorem 3.2. Let (Hl), (H2) be satisfied. Then, for any rj G K, f G [t0,T] and 
0 < At < T — t0, there exists a constant C > 0 such that 

(3.11) || v(ri,0- v(v,0 \\co<C At. 

Proof. Let us assume that there exists a control u G U such that the minimum is 
attained in the discrete Dynamic Programming Principle (if not the same proof will 
work with slight modifications). Let v, be an optimal control corresponding to u such 
that (H2) holds and set ß = e~XAt. Note that in the following calculations we do not 
require neither u nor w to be unique. 
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By applying Theorem 2.5 for r = tp and Theorem 3.1 we have 

v(v,0 -efo.O < I fPf(yr,(t,u)Mt)>-^-to)dt + 

(3-12) -AtPJ2 f(yv(tn)Mtn))e-x{t«-t0)\ + 
n=0 

+ ßp{v(yv(tp,ü),tp) - v(yv(tp,u),tp)]. 

The above inequality and (H2) (b) imply 

v(v,0 -v(v,0 <P<?2(A£)2 + ßp{v(yv(tp,Ti),tp) - v(yv(tp,Ü),tp)} + 
+ ßp[v(yrj(tp,ü),tp) - v(yv(tp,ü),tp)] < 

< pC2(At)2 + ßpC || yri(tp,u) - yv(tp,Ü) \\ + 

+ ^[v{yv{tp, ü),tp) - v(yv(tp, ü),tp)] 

for the Lipschitz continuity of the value function. 
Then, assumption (H2)(a) implies 

v(V,0 - v(r),0 < pC2(Ai)2 + OCv(Mfßp + ßp[v(yv(tP,u),tp) - v{yv{tp,u),tp)} . 

Then we can conclude that 

(3.13) {l-ßp)   sup   (v(V,t)-v(V,t))<pC2(At)2 + CC1(At)2ßp. 

telt0,T] 

In the same way one can prove a similar inequality for    sup    (v(r), t) -v(r),t)). 
t€[t0,T] 

In conclusion, we get 

pC2(At)2 + CCl(At)2ßp 

(3.14) || V(T,, T-t)- v(V,T -1) |U< p  2V    \_ßv 

and since 1 - ßp = 0(pAt) this ends the proof.    D 

The above conditions (HI) and (H2) can be interpreted as assumptions on the 
order of approximation of the time discretization for the dynamics and for the cost 
integral. In finite dimensional control problems one can also obtain sufficient con- 
ditions on the data guaranteeing {HI) and (H2) (see [11]). The inequality (3.9) is 
satisfied if the discrete dynamics is close enough to the continuous dynamics and 
this of course will depend on the accuracy of the approximation scheme and on the 
discretization of the control space (note that we are taking the control in a set U 
which stands for a discretization of Uad)- 

Let us examine in more detail the second inequality (3.10). In order to guarantee 
that (3.10) holds true for the approximation of our parabolic problem we need to know 
that the time derivative of the control u and of the solution of the heat equation exist. 
This can be obtained adding some regularity assumptions on the data of the problem 
(see f.e. Theorem 2 in [12, p. 144]). 
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For example, let us assume that / is Lipschitz continuous with respect to the 
couple (y, u) and that the space Ü is such that for any u 6 Uad there exists at least 
one control uEU guaranteeing 

||W-«||L
2
([O,T]) < CAt 

for some positive constant C. Then, 

< rM |(/(»,(0.2(0) - /&,(*)> u(t)))e-^-^\dt + 
(3.15) C   ,+At 

+1       \f(yv(t),u(t)))\ |e~A(t-to) - e-x^-^\dt < 

< 
rt+At r 1 o 

J        [Ci\\u-u\|L2([0iT]) + C2At]dt < C(Atf 

This tells us that it is important to built an accurate discretization of the control 
space (f.e. by means of piecewise polynomial functions of time) and couple this 
discretization with sufficiently accurate approximation schemes for the dynamics and 
the cost to get the error bound proved in Theorem 2.5. 

4. Some hints for the algorithm 

In order to solve numerically our boundary control problem we use a local version 
of Dynamic Programming trying to reduce the huge amount of computations usually 
needed by that approach. Let us assume that we want to compute the minimum 
over a subset of all the possible trajectories, f.e. we can imagine that there exists a 
trajectory £ starting at our initial condition r\ and reaching a neighbourhood of the 
final state zT. 

The Bellman optimality principle gives the characterization of the value function 
for every initial condition rj G H1^) but, in order to have a feasible algorithm, we 
have to restrict ourselves to a compact set in that space. One possibility is to restrict 
the analysis to a neighbourhood of £ enforcing some state constraints and to deal 
with the Hamilton-Jacobi equation associated to the infinite dimensional problem 
with state constraints. At present the theory and the numerical methods for such 
problems in infinite dimension seem to be rather incomplete and unsatisfactory so 
we prefer to attack the problem by means of a penalization method. In practice, we 
add to the pay-off a (penalization) term rapidly growing outside the tube around C- 

Our algorithm to compute an approximate locally optimal trajectory will be di- 
vided into two parts. At first, in the backward procedure (from T to to), we compute 
a sequence of almost optimal controls and states guaranteeing the final condition and 
the state constraints. Then, in the forward procedure we actually solve our problem 
using the informations obtained in the backward steps. 

Let N be a positive integer and let At = (T - t0)/N, as in Section 3 we consider 
a discretization with time step At and we define tn = t0+ nAt. In order to simplify 
let us assume that there are only m different controls, i.e. U = {ui,.. -,um}. Note 
that we can always construct a discretization of the control space Uad leading to that 
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FIGURE 4.1. A sketch of the backward-forward procedure. 

situation, f.e. using piecewice constant or piecewice linear functions to approximate 
an element in Uad- The set Ü is the finite dimensional representation of our original 
control space. A simple choice is to take controls which are constant on each time 
interval In = (tn,tn+i). 

Figure 1 gives a sketch of the algorithm. The thick solid line represents the trajec- 
tory C while the area contained between the two dotted lines represents the tube. 

The backward procedure works as follows. Starting from the final condition zT, we 
determine a new trajectory (possibly different from C) joining zT to an initial state 
(possibly different from rj) at time t0. More precisely, starting from gN = zT, at each 
time step we take the solution gn+1 of the dynamics at time tn+1, n = N - 1,.., 0, as 
our target and we want to determine a state gn and a control u at time tn such that 
we minimize the running cost related to that displacement. The sequence of all the 
intermediate targets gn will give us the new "trajectory" (the dashed line in Figure 
1) to be used in the forward procedure. 

In fact, in the forward procedure starting from the initial condition rj of the original 
problem we try to pass through the intermediate targets gn, n = 1,.., N, always min- 
imizing the costs over Ü. Since the cost functional depends continuosly on the initial 
conditions (see [17]), we will obtain a quasi-optimal control and a good approxima- 
tion (the thin solid line in Figure 1) of the solution provided the discretization is 
sufficiently accurate. 

The fully discrete algorithm requires a further discretization in space. This means 
that in the numerical solution of the boundary control problem one has to couple 
an approximation scheme for the dynamics (which can be a black-box solving the 
heat equation for any initial condition and piecewise constant boundary control) 
and an approximation scheme for the cost functional (which can also be a library 
routine for the numerical integration over fi). In the backward procedure the black- 
box is used to compute the solutions corresponding to a finite number of initial 
conditions and controls, comparing the results of the integral on each of them one 
can get a couple (gn, un) giving the optimal discrete value. The forward procedure 
uses the knowledge of the "intermediate targets" to solve a sequence of optimization 
problems in the intervals /„. In each of this optimization problems one starts from the 
numerical solution at time tn and tries to reach gn+1 minimizing the cost. Note that 
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the algorithm computes local minima. So in general we will obtain an approximation 
of the optimal solution in the tube. Only if our tube contains the optimal solution 
for the unconstrained optimal control problem we would expect to converge to the 
globally optimal solution. 

5. Appendix 

1.   We give for completeness the proof of the Dynamic Programming Principle 
(Theorem 2.5) for our problem. 

Proof. Let us denote by w(rj,t0) the right hand side of (2.23). 
We consider two cases. 
1) Let T = T. We first observe that, by definition, 

v(yr,(T),T) = mfMyv(T)). 
uEU 

We have then 

' r 
ho 

w(V,t0) = mi\ [  f(yv(t;u),u(t)>-Ht'to)dt + v(yv(T),T) 
ueu [Jt0 

= inf ( [T f(yv(t; u), u(t))e~x^dt + ^{T))^-^ 

which coincides with the definition of the value function. 
2) Let T <T. We will show the two inequalities: 

a) v(rj,t0) >w(rj,t0). 
For any fixed u G U, we can write 

e   A(T-to) [ = 

J(r,,t0,u) = /T/(%(i;w),«(t))e-A(t-to)^ 

+ [ f(yv(t\ u),u(t))e-xit-to)dt + i>(yv(T))e 

+ 

A(T-to) 

Since the solution of the heat equation is unique, setting \x = yn(r]u) we have 
yv(t;u) = yM(i;u), for every t > r. Then the definitions of the cost function and 
of the value function imply 

J(V, t0, u) = [T f(yv(t; u), u(t))e-x^dt + 

+ e-x^{£ f(y,(t; u), u(t))e-^-^dt + ^yß(T))e^T-^} = 

= [Tf(yv(t-,u),u(t))^Ht~to)dt + e-x<-T-^J(y,(T),T,u) > 
Jto 

> fTf(Vn(t;u),u(t))e-x^dt + e-^-'My^lr). 
Jto 

Taking the infimum over u G U, we prove our first inequality. 
b) v(r],t0) < w(rj,t0). For any e > 0 there exists u£ eU such that 

(5.1) v(ß,T) + e> J(ß,r,ue) 

where [i = %(r, u) and u is fixed. 
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Define 

T.{r  f]_ {    U0M)      t0<t<T U^*J-j uE(x,t)   T<t<T. 

Then, by definition, 

v(v,to) < J(v,to,ü) = [T f{yv(t;ü),ü(t)>~X{t~to)dt + 
(5-2) .T 

Jt° 
+ 1  /(y,(«;«))ü(t))e-A(t-t0)dt + ^(y,(T))e-A(T-t0) • 

The uniqueness of the solution for (2.1) and the definition of u, imply 

yv(x,t,u)-^ y^Xjt.Us)   T<t<T. 

By substitution in (5.2), we get 

v(v,h) < [T f(yv(t; u),u(t))e-^-to)dt + 

+1/M*; us),uE(t))e-X{t-to)dt + iP(y,(T))e-*T-^ - 

= r /(»,(*;«), u(t))e-*-^dt + e-x^{ J(M,T, U£)} < 
•/to 

f f(yv(t-u),u(t))e-X(t-to)dt + e^"^ (v(ß,r) + e) . < 

Taking the infimum over u € U, by the arbitrariness of e we get the reverse 
inequality. This ends the proof.     D 

Note that one of the crucial requirements for the proof is the fact that the set of 
controls is "closed by concatenation", i.e. if two controls Wi and u% belong to Uad 
then, for any r G[t0,T], also the control 

..(T f)-( «lOM)    t0<t<T u^,t)-<^ U2(X;i)   T<t<T 

belongs to the same space f/od. As a consequence the Dynamic Programming Principle 
holds also under the restrictions (2.26) and (2.27) on the controls and on the initial 
data. 

2. Here is the statement in Corollary III.20 in [6] 

Theorem 5.1. Let E be a reflexive Banach space, A C E be a closed, bounded, convex 
subset and the function (j> : A —>] — oo, +oo] be convex and lower semicontinuous. 
Then, there exists x0 G A such that (f>(x0) = min^>(x). 
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ABSTRACT. We formally state and prove the wellposedness and the local Lipschitz con- 
tinuity of the multisurface stress-strain law of nonlinear kinematic hardening type due to 
Chaboche within the space of time-dependent tensor-valued absolutely continuous func- 
tions. The results also include the more general case of a continuous family of auxiliary 
surfaces. 

1991 Mathematics Subject Classification.   47H30, 73E05 

Key words and phrases. Plasticity, Chaboche model, hysteresis operators, kinematic hard- 
ening. 

1. Introduction 

In rate independent plasticity, the Prandtl-Reuß model constitutes the basic model 
for the stress-strain law. Here, the elastic region Z is bounded by a yield surface 
dZ. Throughout this paper, we will assume the yield surface to be a sphere of radius 
r in the space of deviatoric stresses. If loading occurs while the stress deviator crd 

lies on the yield surface, there is plastic flow with a plastic strain rate ip proportional 
to the outer normal to dZ in ad ■ It has been known from experiments for a long 
time that for many materials the yield surface undergoes changes which depend upon 
the history of the loading process. In the Melan-Prager model which dates back to 
[12], [13], nowadays called linear kinematic hardening, the yield surface moves during 
plastic loading in the direction of the plastic strain rate. More sophisticated models 
have been developed to account for real material behaviour, in particular for the 
phenomenon called ratchetting. Among those, the Chaboche model [10], also called 
nonlinear kinematic hardening, enjoys a widespread popularity. In its standard form, 
it employs a finite family of auxiliary spherical surfaces. In the special case of a single 
auxiliary surface, assumed to be centered at 0 with radius R, the model is known 
as the Armstrong-Frederick model [1]; here, the center ab of the yield surface, also 
termed the backstress, moves according to the differential equation 

(1.1) ab = j(Rip-a< »^ 

* Supported by the BMBF, Grant No. 03-BR7KIE-9, within "Anwendungsorientierte Verbund- 
projekte auf dem Gebiet der Mathematik". 

t Supported by the BMBF during his stay at Kiel. 
* Partially supported by the Grant Agency of the Czech Republic under Grant No. 201/95/0568. 
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for some constant 7 > 0, see Figure 1. (In the Melan-Prager model, the term -cr6|£p| 
is omitted.) 

E„p( 

Figure 1:  The model of Armstrong and Frederick. 

In the Chaboche model, the backstress ab is decomposed into a sum 

(1.2) ^ = Eff*» 
kei 

where each constituent a\ satisfies an equation of type (1.1), namely 

(1.3) at = -y(fc) (i2(fc)^ - otl^l) ,    k€l 

In the standard Chaboche model, the index set I is finite; we will allow an arbitrary 
measure space and thus include the case of a continuous family of auxiliary surfaces. 

Figure 2 shows the rheological structure of the model. It visualizes the relations 
between the various variables which occur in the model, stated formally in (2.5) 
- (2.12) below. The element £ refers to the linear elastic part, H is called the 
rigid plastic element and represents the variational inequality, and /C*, is the element 
defined by (1.3). The element C plays a special role; it stands for the linear element 
a1 = Clep of the Melan-Prager model. It may or may not be included within the 
Chaboche model, but its presence or absence influences the asymptotic behaviour (see 
e.g. [7]). If we remove all nonlinear elements Kk in Figure 2, we obtain the Melan- 
Prager model. If we moreover delete the element £, we arrive at the Prandtl-Reuß 
model. 

In this paper, we prove that the Chaboche model is well posed in the space W1'1 

both in the stress controlled and in the strain controlled case by proving that the 
defining equations and inequalities of the Chaboche model (see (2.5)-(2.12) below) 
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lead to operators 

(1.4) e = F{o),    a = g{e), 

which are well defined and Lipschitz continuous on their appropriate domains of 
definition. In doing this, we consider the stress-strain law in isolation, that is, we do 
not study the boundary value problems which arise from the coupling with the balance 
equations. For the proof we utilize the method of [2]. There we have introduced 
an auxiliary variable u in order to reformulate the model equations such that the 
unknown functions of Figure 2 appear only in terms of \ep\ and av

d . The analysis 
is based on the concept of hysteresis operators, that is, of operators which are rate- 
independent as well as causal, see e.g. [14], [8], [9], [3]. 

rAAAAAAAA/Wr 

ICk: e'A 

-AAAAAAA/WM 

K: ep,ap 

Figure 2:  The rheological structure of the Chaboche model. 

2. Model Formulation and Main Result 

We first fix some basic tensor notation. By T, we denote the space of symmetric 
N x N tensors endowed with the usual scalar product and the associated norm 

N 

(2.i) (T,J?) = J2 njVij,   hi = \Ar'T)' 

For T £ T, we define its trace Tr r and its deviator rd by 

(2.2) Trr = X> = M>    rd = T-—S, 
i=\ 

where 6 = (%) stands for the Kronecker symbol. We denote by 

(2.3) Td = {r:TGT,Trr = 0},    T$ = {r : r = \S, A 6 
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the space of all deviators respectively its orthogonal complement. We understand 
stress and strain as time-dependent tensor-valued functions which are absolutely- 
continuous, 

(2.4) ff.ee W1'1(to,ti;T) 

:= {T\T : Mi] -► T, ||r||i,i = \r{t0)\ + f * |f(t)| dt < oc} . 

As we study the stress-strain law in isolation, we do not consider the space depen- 
dence. In this terminology, the Chaboche model takes on the form 

(2.5) a = ab + ap,    e = ee + ep,    ep(t) G Td   Vi, 

(2.6) (ep,ap
d-ä)>0,    Vä G Td, |ä| < r, 

(2.7) K\<r, 

(2.8) a = Aee, 

(2.9) a\t) = j ab
k{t)dv{k) + vlal{t)   Vt, 

(2.10) &l = 7(*0 (R(k)ep - crbk\e
p\) ,    for all k e /, 

(2.11) al = Clep, 

(2.12) ap(t0) = ffg ,     <rbk(t0) = ab
0(k),     for all k G / . 

Throughout this paper, we assume the data to have the following properties. 

Assumption 2.1. 
(i) I is a measure space, v is a finite nonnegative measure on I, the numbers ul, Cl 

and functions R G I}V{I), 7 e L»(J) satisfy i/,R,r/ > 0, Cl > 0, fjR{k)dv{k) > 
0 and 

(2.13) 0 < 7min < 7(/c) < 7max,    for all k G I. 

(ii) The initial values in (2.YL) satisfy 

(2.14) agGTP = {r:rGT, \rd\<r}, 

(2.15) ^ G Tb = {/|/ G Li(7; Td), |/(fc)| < Ä(Ä) o.e.} . 

(mj yl: T —> T is linear, symmetric and positive definite. 

We also introduce the constants 

(2.16) Fi = J>y{k)iR(k)dv(k),    » = 0,1,2,3. 
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Remark 2.2. 
(i) If the index set / is finite, say i" = {1,... ,K}, and if v is chosen to be the 
counting measure, that is, v{ J) equals the number of elements in J for every subset 
J of /, then we obtain the standard formulation of the multisurface Chaboche model 
with K auxiliary (limiting) surfaces, namely 

(2.17) ^ = XX- 
fc=i 

In this case, the model (2.5) - (2.12) is identical with the one discussed in ([10], 
Section 5.4.4), nonlinear kinematic case, if we change the notation according to 

(2.18) k = l,    a»=X,,    7(*) = y|7l,    7(W0 = \Ci ■ 

(ii) If we have K = 1 in (i), or if we choose 7(fc) = 7 and R(k) = R/v{I) to be 
constant, the Chaboche model reduces to the model of Armstrong and Frederick [1] 

(2.19) &b = j(Rep - aV|). 

(iii) If dv{k) = g(k)d\(k) for some function g, that is, if the measure v has a density 
with respect to the Lebesgue measure A, we obtain a version of the Chaboche model 
with a continuous one parameter family of backstresses respectively auxiliary surfaces. 

We formulate our main results. For the strain controlled case, we assume Hooke's 
law for the linear elastic part, that is, 

(2.20) As = 2ß£ + ATr (e)6, 

where A, fi > 0 denote the Lame constants. 

Theorem 2.3 (Wellposedness, Strain Controlled Case). 
Let Assumption 2.1 as well as f2.20j hold. Then the system (2.h)-(2.Yl) defines an 
operator 

(2.21) a = Q(e;alob
0), 

(2.22) g : WAi(i0)il;T) x Tf x Tb -> W^fat^J) , 

which satisfies the Lipschitz condition 

(2.23) \\Q(e;crlo-b
0)-g(s;äp

0,ä
b

0)\\hl 

< L(K) (|| e - e ||M + K - <\ + \Wo - 4hl(i;Td)) , 

where the Lipschitz constant is uniform over subsets {(e,O-
P

,O~Q) : \\sWn < K} of 
the domain of definition of g . 

We now consider the stress controlled case. If ul = 0, that is, if the Melan-Prager 
element is absent, our choice (2.12) of initial conditions restricts the initial value 
<r(to) of the stress; on the other hand, there has to be an initial condition 

(2.24) ep(t0) = eg 
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for the plastic strain.   This setting also works for the case vl > 0, the restriction 
being 

(2.25) a(t0) = < + l vb
0(k)dv(k) + vlClep

0 . 

In the case vl = 0, the description of the domains where the Lipschitz constant is 
uniform involves the number 

(2.26) /? = J- + ^. 
7min 12 

Theorem 2.4 (Wellposedness, Stress Controlled Case). 
Let Assumption 2.1 hold. 

(Case vl > 0.) The system ("2.5j-f2.12j, f2.24j defines an operator 

(2.27) e = F(<r,o%,ob
0,4),    ? ■ D° - W^h^T), 

where Da C W1'1(£0,*i;T) xT'xfxTj is the subset of quadruples which satisfy 
Clflh). Moreover, F satisfies on Da the Lipschitz condition 

(2.28) || T{p\ o-l a*, eg) - Tip; crp0, ä
h

0, eg) ||1(1 

< L{K) (\\a-a W, 1 + |ag - ög| + \\ab
0 - äb

0\\Ll{I.Jd) + 14 - eSl) , 

w/iere i/ie Lipschitz constant is uniform over subsets {(a, ap,ab
0,e

p
0) : || cr ||lj]L < if} 

0/ the domain of definition of J- . 

(Case vl = 0.) For every K > 0, let DaA  be the subset of Da  where the two 
conditions 

(2.29) |/7(*)*o(*)<M*) < Ta(l - K) , 

(2.30) Ikdll^^ro+r-rDS/s, 

hold, the number ß being defined in (2.2Q). Then T has the properties as stated 
above on the domains Da%K instead of Da ; in particular, the Lipschitz constant also 
depends on K . 

A well known example (see [10], or Example 3.5 in [2]) shows that the bound 
II °~d lit» < T0 + r in (2.30) cannot be improved. 

The basic idea of the proof of the two theorems above is the same as in [2]. We 
replace the two unknown functions ep and ap

d by a single auxiliary function u, 
namely 

(2.31) u = Cep + av
d , 

where C > 0 is a suitably chosen constant. In fact, both functions ep and ap
d can 

be expressed as 

(2.32) ep = ^V(u;ap
d),    a

p = S(u;ap
d). 
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Here, the stop operator <S represents the solution of the evolution variätional in- 
equality 

(2.33) k5|<r,     (ü-ap,ap-ä)>0     a.e..  V-|ä| <r, 

with the initial condition 

(2-34) <%&)=<&, 

and the play operator V is defined by 

(2.35) V{u;ap
d)=u-S{u-ap

d). 

We refer to [2] and [9] for more details. We now derive a differential equation for u 
where the internal variables o\, a1, ed, ep appear only in terms of ad and \ip\. In 
the stress controlled case, we set 

(2.36) C = Tj + vlCl. 

Using the model equations, we obtain 

(2.37) Ü   =   {T1 + ulCl)ip + &p
d = (T1 + iylCl)ep + &d-&b' 

=   &d + J-y{k)ab
kdv(k)\ep\. 

In the strain controlled case, where wehave assumed Hooke's law (2.20) for the linear 
elastic part, the backstress ab satisfies 

(2.38) <Td = 2ßee
d,    a

b = 2lied-{2^ep + ap
d). 

Here, we set the constant C in (2.31) to 

(2.39) C = 2fi + T1 + vlCx, 

and obtain 

(2.40) ü   =   (2fi +1\ + vlCl)ep + &p
d = 2ßip + 2/ied - &b + (rx + i/Cl)ep 

=   2fiid + Ji(k)ab
kdv(k)\ep\. 

As it is well known, one can easily eliminate the unknowns of''with the variations of 
constants formula. Using the basic identity 

p 

(2.41) sp = ^\ip\, 
r 

the differential equation (2.10) for the backstresses becomes 

(2.42) Ö» = 7(fc) (*CTP _ ^ |^|,    k eI; 

For later use, we will write down the solution formula in terms of the play and stop 
operator with the abbreviated notation 

(2.43) i = V{u;ap
d),    x = S(u;ap

d),    Z,x:[io,ti]'-*Td. 
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The function 

(2.44) V(t)=VaiM£   (=jT|£(T)|dT,    if £ e W1-1(t0,ti;T(,)) 

represents the accumulated plastic strain, scaled by a constant factor. If we set 

(2.45) ' Wk(t) = exp M$-V(t)\ , 

the backstresses can be expressed as 

(2.46) d(t) = exp (-^V(*)) fa) + I ^T*W ^*W) ■ 

Thus, for the stress as well as for the strain controlled case, the auxiliary function u 
satisfies the equation 

(2.47) Ü = e + M{u;alab
0)\i\, 

where 9 = ad respectively 9 = 2)j,ed, 

(2.48) M(u; ag, o*)(t) = i jf 7(*0"*(<) <M*), 

and (2.43) - (2.46) are used to express o\ in terms of the arguments of M . Equation 
(2.47) is complemented by the initial condition 

(2.49) «(to) = Cep{t0) + ap
d. 

In the stress controlled case, ep(t0) is prescribed, whereas in the strain controlled 
case, it can be expressed in terms of the given data by (2.38). 

Once the auxiliary equation (2.47) is solved, we can express the operators T, Q in 
terms of u, namely 

(2.50) s = T{p, og, o$, el) = ee + ep = A~la + ±V{u; ap
d), 

2u 
(2.51) a = Q{e, ag, ab

0) = A{e - ep) = Ae - -gV(u; ap
d). 

3. Proof of the Wellposedness 

The wellposedness of the initial value problem 

(3.1) üit)=9(t)+M(u;ap
0,a

b
0)it)\iit)\,    £(*)=?(« ;<&)(*), 

(3.2) «(to) = «° • 

has been studied in [2] concerning the dependence on 9; the dependence on the initial 
conditions (u°, erg, afj does not pose any new problems. For the convenience of the 
reader, we repeat the formulation of the existence theorem, adapted to the present 
case. 
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Theorem 3.1. Let 9 e W1,1(t0,*i;Td), u° G Td and an operator 

(3.3) M : C(Mi];Td) xTfxf^ C([t0,*i];Td) 

be given. Assume that M.{-\OQ,a^) is causal and continuous with respect to the 
maximum norm for all CTQ G T^ and O-Q £Tb, and that K > 0, o% G ¥£, CTQ G T6 and 
u° G Td are given SMC/I that 

(3.4) sup |.M(U;CT£,CT£)| <1-K 
T6[t0,t] 

holds for all t G [to, ii]  anrf a^J u G W1,1(to,i;Td) wi#i u(to) = w° ß^ 

(3.5) |ü(r)| < -|0(T)| ,     a.e. m (i0,i) • 

Then there exists a solution (u,£) of the Cauchy problem (3.1), (3.2) where the 
functions u,£ G W1'1^,^;!!^) fulfil (3A) and (3.5). Moreover, every such solution 
which satisfies (3A) also satisfies (3.5). 

Proof. See [2], Theorem 3.2. D 

Lemma 3.2. The operator M(-;OQ,OQ) as defined in (2A3) - (2A8) is causal and 
continuous on C([t0,ti];Td) for all 0% G T£ and CQ G Tb. The backstresses a\ 
satisfy the a priori estimate 

(3.6) \ab
k(t)\ < R(k),    a.e. in {t0,h), 

for all k £ I. 

Proof. The estimate (3.6) follows from the variations of constants formula (2.46), since 
\%{t)\ < r and |CTQ(A;)| < R(k) hold for all t and k. Let now un G C([t0,ti];Td) 
converge uniformly to u G C([to,ti];Td). It is known (see [9]) that 

(3.7) £„ = V(un ;ald) -+ £,=V(u;o%d),    xn = S(un ;agd) -► x = S(u;a^d), 

(3-8) Vn(t) = Vax[to,t]£„ -> V(t) = Vax[M£, 

uniformly on [*o,£i] ■ An application of Lebesgue's dominated convergence theorem 
yields the assertion. □ 

We now discuss the boundedness property (3.4). By the definition of M in (2.48), 
the estimate (3.6) yields 

(3-9) II^M,^)L<§, 
so (3.4) holds for all arguments, regardless of (3.5), with 

,O,„N "'C* .   , 2/j, + vlCl 

(3.10) K = —— ,    respectively   K = — , 
G G 

in the stress respectively strain controlled case. Thus, the existence of a solution of 
(3.1), (3.2) follows for the strain controlled case and, if in addition vl > 0, also for 
the stress controlled case. 
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Existence proof; for the stress controlled case with vl = 0. Let K > 0. According 
to Theorenii2.4, we want to prove existence for initial conditions satisfying 

(3.11) a(t0)=vPo + Jo%(k)dv(k), 

(3.12) \ji{k)ul{k)dv(k)\ < r\(l - K) , 

and for stress;inputs ad = 9 e Wn'1(i0,*i;Td) satisfying 

(3.13) •\\tJd\\ao<ro + r-T1ßK,    /3 = -^- + ^. 

Let such a ad !be given, choose TJ > 0 small enough such that 

(3.14) f+V \&d{T)\dT <-?-± ,    Vie Mi-»7]. 

In the first step^we will prove that, if we have a solution u of (3.1), (3.2) satisfying 
(3.4) on [to, a]-, 'then lit can be extended to [a, a + rj\, and every such extension ü 
satisfies 

(3.15) IIM^^Iloo^1-! 

on [a, a + rj\, and 
2 

(3.16) \\u(t)\ <-\&d(t)\;     a.e.   on (a,a + rj). 

To this end, let u £ Wl%a, a + rf;Td) be an arbitrary function which satisfies (3.16) 
as well as ü(a) = w{$:; setting ü = u on [i0,o] we may regard it as an element of 
Wu\to,a + t];Td) ®$ ^1- F^0111 tne variation of constants formula (2.46), applied 
on the interval j[ta.,«i+-^|9 we obtain 

(3.17) |ofti)-<£<«)!! 

< A _«pf_Ä(yW _ ^(a^)| -(l^(a)l + R(k)),    te[a,a + rj\, 

for the corresponding foadbStresses. Since 

(3.18) |K@) - V(a) \ < f |i{r)'| dr, 
Ja 

we get 

(3.19) |oJ(i) - *fc(a)| < 2Ä(A;)^jrV(r)Hr<^ßw£+'?1äd(r)|dr 

< f«, 
so 

(3.20) IMM."o)(*) -M(ü;ap
0,a

b
0)(a)\ < |. 

Thus, the assumption \M{ü; ap
0, o$)(a)\ < 1-K implies that (3.15) holds if ü satisfies 

(3.16). We may therefore apply Theorem 3.1 on the interval [a,a + rj\ to conclude 
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the first step of the proof. In the second step, we use (3.13) to show that (3.15) can 
be improved to 

(3.21) \M(ü;ap,ab
0){t)\<l-K,    Vte[a,a + r}]. 

In fact, if (3.21) does not hold, then there must exist a t 6 (a, a + 77) such that 

(3.22) \M(ü-alab
0)(t)\>l-K,    A (\M(ü;ap

0,a
b)(t)\2) > 0. 

Let us define 

(3.23) a = \M{u; ap
0, a

b)(t)\,    e = ±M(ü; ap
0, a

b)(t) € Td, 

then obviously 

(3.24) 0<l-a<K,     |e| = l. 

The choice of t implies that 

1 d 
(3.25) 0   <   ^(|^(ö;<7g,^)(i)|2) = ^^7(fc)(^(t),e)Mfc) 

=   £-\£(t)\ J^kf(^-x(t) - ab
k(t),e) dv{k), 

so in particular |£(t)| > 0 and therefore 

r 
(3.26) jf7(A02<a£(i),e><Mfc)   <   y«t),e) 

=   D>(fo(t),e>- jy&U)*»^ 

hence 

(3.27) jf (7(fc)2 + ^) (o*(t), e) dv{k) <V-f\\ad L . 

On the other hand, the a priori estimate |cr|(i)| < R{k) shows that 

(3.28) 0<l-a = ^- I\(k)(R(k)e - ab
k{t),e) dv{k) <K, 

11 Ji 

hence the definition of ß in (3.13) yields 

(3.29) jf (l + ^7(fc)2) (R(k)e - ab
k{t\ e) dv{k) 

< ß / l(k)(R{k)e - o\(t), e) dv(k) < ßYXK, 

and therefore 

(3.30)   \\ad\\00>Ji(l + ^(k)^R(k)du(k) 

- I (l + jr7(*02) (Ä(Ä)e - oi(t), e) dv{k) > T0 + r - ßTlK, 
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which contradicts our assumption (3.13). Thus, such a t cannot exist, and the second 
step is proved. Applying the two steps in an alternate fashion we are able to cover 
the whole interval [io,*i], thus completing the existence proof. D 

Proof of uniqueness and Lipschitz continuous dependence. We combine a Gronwall 
type argument with the Lipschitz continuity property of the hysteresis operators V 
and S. As the arguments are essentially the same as for the single surface case, i.e. 
the model of Armstrong and Frederick, we can use the results of [2] to a large extent. 

Proposition 3.3. Let two sets of data (6U «?, o-P0, 
CTio) > (#2,«", ofo. °2o) with ^ e Q, 

ul e X, <rf0 e Tp and af0 G Tb be given, let (uu£i) and (u2,6) be corresponding 
solutions in W1'1^,^;^) of the Cauchy problem (ZA), (3.2) which satisfy (3A) 
and (3.5). Assume that 

(3.31) max,|^(«i;fff0)a?0)(s) - M{u2;ap
2Q,o

b
2Q){s)\ 

s€[ta,t] 

< A{\U
P

W - o-Z0\ + IK - ^0||Li(7;Td) + I«? - u§| + J^ |«i - «21 dsj 

holds for all t e [to,h]. Then there holds 

(3.32) ||ui-«2|li,i 

< L (I«? - u°2\ + Ko - ap
20\ + \\ab

0 - ab
w\\Ll{I,Td) + \\ 91 - 02 \\1A) , 

where L depends only upon A,K,r and 

(3.33) c:=max{||Öi||lil, || 021|1(1} • 

Proof. See Theorem 3.3 in [2]. □ 
The operator M as defined by (2.43) - (2.48) satisfies 

(3.34) \M(ui; <T
P

10, a
b
0)(t) - M(u2; ap

20,a
b
0)(t)\ 

< / 7(*)l4>(*) - <(k)\du(k) + (^ + ^£ 16001 ds) fto |6 - 61 ds, 

as a repeated use of the triangle inequality as well as of the inequality | exp(-i) - 
exp(-s)| < \t - s\, valid for t, s > 0, shows. It was proved in [2], Theorem A.5, that 

rt   . ft y/2  [*.    .. 
(3.35) /   |6 - 61 ds < \ap

od - aP
od\ + /   \ül-ü2\ds + —- I   H]^ - x2\ ds 

Jto Jt0 I       Jt0 

holds. Moreover, by the standard uniqueness argument for variational inequalities 
(see also Proposition A.l in [2]), one has 

(3.36) \xi(t) - x2(t)\ < \ap
wd - ofj + / |«i - u2\ ds. 

Putting together the estimates (3.34) - (3.36), one sees that M satisfies the assump- 
tion (3.31) with some constant A which depends only on || ux \\1V || u2 \\ltl and on 
the problem data. Therefore the Lipschitz estimate (3.32) holds for the difference 
Ui—u2 of the two solutions. It extends to all the unknown functions in the Chaboche 
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model, since they can be expressed in terms of u and £ as shown at the end of Sec- 
tion 2, both for the stress controlled and the strain controlled case. Thus, the proof 
of Theorems 2.3 and 2.4 is complete. 

References 
1. P.J. ARMSTRONG and CO. FREDERICK, 1966, A mathematical representation of the mul- 

tiaxial Bauschinger effect, C.E.G.B., Report RD/B/N 731. 
2. M. BROKATE, P. KREJCI, Wellposedness of kinematic hardening models in elastoplasticity, 

Math. Model. Numer. Anal, to appear. 
3. M. BROKATE, J. SPREKELS, 1996, Hysteresis and phase transitions, Springer-Verlag, Berlin. 
4. J.-L. CHABOCHE, 1989, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, 

Int. J. Plasticity, 5, pp. 247-302. 
5. J.-L. CHABOCHE, 1991, On some modifications of kinematic hardening to improve the de- 

scription of ratchetting effects, Int. J. Plasticity, 7, pp. 661-678. 
6. J.-L. CHABOCHE, 1994, Modeling of ratchetting: evaluation of various approaches, Eur. J. 

Mech., A/Solids, 13, pp. 501-518. 
7. M. KAMLAH, M. KORZEN and CH. TSAKMAKIS, Uniaxial ratchetting in rate-independent 

plasticity laws, Ada Mechanica, to appear. 
8. M.A. KRASNOSEL'SKII and A.V. POKROVSKII, 1989, Systems with hysteresis, Springer- 

Verlag, Berlin. Russian edition: Nauka, Moscow 1983. 
9. P. KREJCI, 1996, Hysteresis, convexity and dissipation in hyperbolic equations, Gakkotosho, 

Tokyo. 
10. J. LEMAITRE and J.-L. CHABOCHE, 1990, Mechanics of solid materials, Cambridge Univer- 

sity Press, Cambridge 1990. French edition: Dunod, Paris 1985. 
11. G.A. MAUGIN, 1992, The thermomechanics of plasticity and fracture, Cambridge University 

Press, Cambridge 1992. 
12. E. MELAN, 1938, Zur Plastizität des räumlichen Kontinuums, Ingenieur-Archiv, 9, 116-126. 
13. W. PRAGER, 1949, Recent developments in the mathematical theory of plasticity, J. Appl. 

Phys., 20, pp. 235-241. 
14. A. VISINTIN, 1994, Differential models of hysteresis, Springer-Verlag, Berlin. 

Martin Brokate Pavel Krejci 
Mathematisches Seminar Institute of Mathematics 
Universität Kiel Academy of Sciences 
D-24098 Kiel, Germany Zitnä 25 

CZ-11567 Praha, Czech Republic 



81 
International Series of Numerical Mathematics 
Vol. 126, © 1998 Birkhäuser Verlag, Basel 

On the Behaviour of the Value Function of a Mayer 
Optimal Control Problem along Optimal Trajectories 

PIERMARCO CANNARSA AND MARIA ELISABETTA TESSITORE 

Dipartimento di Matematica 
Universitä di Roma "Tor Vergata" 

ABSTRACT. We consider a Mayer optimal control problem for a system governed by a 
semilinear evolution equation of parabolic type. 

We are interested in the smoothness of the related value function V along an optimal 
trajectory £*(•). We obtain an estimate on the superdifferential of V at (t,x*(t)) which 
states that 

dimD+V{t,x*(t))<l. 

This result may also be regarded as a necessary condition for optimality. 
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1. Introduction 
In this paper we are concerned with the following optimal control problem: 

(1.1) minimize g{x{T)) 

over all trajectory-control pairs {x,j}, subject to the semilinear state equation 

x'(t) + Ax(t) + f(t,z(t), 7(t)) = 0,    t€ [t0)T] (12) (x'(t)+Ax( 
y ' ' \ x(to) = XQ 

Here, x0 belongs to a real Hilbert space X, t0 6 [0, T] and -A is the infinitesimal 
generator of an analytic semigroup. For simplicity, we assume that A is self-adjoint. 

A control 7*(-) is said to be optimal, if the minimum in (1.1) is attained at 7*; the 
corresponding trajectory x*(-) is said to be an optimal trajectory. 

The value function V of problem (1.1)—(1.2) is defined as 

(1.3) V(t0,x0) = inf{<7(:c(T))|{z,7}subject to (1.2)} 

and satisfies the Dynamic Programming (or Hamilton-Jacobi-Bellman) equation 

-dtV(t, x) + (DxV{t, x), Ax) + H(t, x, DxV(t, x)) = 0 
(1.4) 

Vte(0,T), VzeX 

see [7]. In the above equation, H : [0, T] x X x X —>■ R is the Hamiltonian defined as 

(1.5) H(t,x,p) = sup-(pj(t,x,~f)). 

Preceding Page Blank 
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It is well known that V is not differentiate in general. We are interested in 
studying if it gains regularity along an optimal trajectory. The condition we derive 
in the sequel can therefore be seen as a necessary condition for optimality. 

There are several reasons suggesting that the behaviour of V should be better 
along optimal trajectories. In finite dimensions this improvement in regularity is 
known for problems with a "strictly convex structure", such as Calculus of Variations 
(see [8]), some Minimum Time problems (see [4]), and problems with infinite horizon 
(see [10]). Indeed, in such examples, the value function V is differentiable along an 
optimal trajectory. 

For Mayer problems, however, the Hamiltonian H is homogenuos of degree one 
in p, and so it is not strictly convex. Nevertheless, by a careful application of the 
Dynamic Programming equation (1.4), we deduce that the value function V cannot be 
too singular along an optimal trajectory x*(t),t G (to,T), of a sufficiently "smooth" 
problem. In fact, we prove the estimate 

(1.6) dimD+V(t,x*(t)) < 1,    Vt G (t0,T), 

which bounds the dimension of the superdifferential of V along x*(t). This result is 
new also for finite dimensional problems. 

Finally, we would like to observe that (1.6) does not hold for an arbitrary Mayer 
problem, but requires a smoothness assumption on the set /(£, x*(t), U) of admissible 
velocities. Indeed, if H vanishes, then equation (1.4) becomes too weak a condition 
on V to prevent the generation of higher singularities. We discuss this phenomenon 
in Example 3.5. 

2. Preliminaries 

Let Jbea real Hilbert space and U a complete separable metric space. Fix T > 0 
and let (t0,x0) G [0,T] x X. Consider the problem of minimizing the functional 

(2.1) J(t0, x0; 7) = g{x(T; t0, x0,7)) 

over all measurable functions 7 : [0,00) -* U (usually called controls). Here g : 
X —> K is a given continuous function and a;(-;t0,a;o,7) is the mild solution of the 
semilinear state equation 

f x'(t) + Ax(t) + f(t, x(t),7(t)) =0,    t G [to,T] 
{ ' ' \ x{t0) = x0, 

that is the solution of the integral equation 

(2.3) x(t) = e-V-^xo ~ f e-(*-s>A/(s,x{s), >y(s))ds 
Jto 

for all tG [t0,T\. 
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In the above Mayer optimal control problem we impose the following assumptions 
on the data: 

(i)      A: D(A) C X —> X is self-adjoint and generates 
an analytic semigroup,   etA, t>0; 

(2.4) 
(ii)    f : [0, T] x X x U —> X is continuous and such that 

\f(t,xn)\<C0(l + \x\), 
\f(t,x,1)-f(s,y,1)\<C0[\t-s\ + \x-y\} 
for some C0 > 0 and all t, s G [0, T], ar, y G X, 7 £ U; 

(iii)   g is Lipschitz on all bounded subsets of X. 

It is well known that, under the above assumptions, problem (2.3) has a unique mild 
solution x(-)eC([t0,T];X). 

Let Q be an open subset of X and tp : ft —> R. 

Definition 2.1. For any fixed x0 G Q, the semi-differentials of (p at x0 are defined as 

^(xo) = lp€X\ hmsup ^)-^)-(P.»-»°) < 0) 
(, x^xo \X-X0\ J 

D>(,o) = LeX\ hminf y(»)-^°)-(P.»-»ö) > 0} 

and called super and subdifferential of tp at x0, respectively (see [5]). 

The semi-differentials D+(p(x0) and D~(p(x0) are both non-empty if and only if tp 
is Prechet differentiable at x0. In this case we have 

D+tp(x0) = D-tp(x0) = {V^(a:o)} 

where V</? denotes the gradient of tp. 

Definition 2.2. We denote by D*tp(x0) the set of all points p G X for which there 
exists a sequence {xn}neN in X with the following properties 

!(i)      xn converges to x0 as n —* 00 
(ii)    tp is Prechet differentiable at xn,\/n & N 
(iii)   Wtp(xn) weakly converges to p as n —> 00 

If tp is Lipschitz in a neighborhood of x0, then tp is Prechet diffentiable on a dense 
subset of Q. Consequently, D*tp(x0) j^ <j>. 

Let now fi be convex and set BT(XQ) = {x G X \ \x — x$\ < r}. 

Definition 2.3. We say that tp is semi-concave if there exists a function 

(j : [0, +00) x [0, +00) -> [0, +00) 

satisfying 
( (1)    to(r, s) < LJ(R, S),   V0 < r < R,    V0 < s < S 
{  (ii)    lim u>(r,s) =0,      Vr > 0 
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and such that 

(2.6) \<p(x) + (1 - \)<p{y) - <p{\x + (1 - \)y) < A(l - X)\x - y|w(r, \x - y\) 

for every r > 0, A G [0,1] and x, y G fi n 5r(0). 

The superdifferential of a semi-concave function has several useful properties, some 
of which are recalled in the following 

Proposition 2.4. If ip is semi-concave in Br(x0) for some r > 0, then 

(2.7) D+<p(x0) = WD*<p{x0) 

where cö denotes the closed convex hull. In particular D+ip(x0) ^ <j>. 

Remark 2.5. For a semi-concave function the semidifferential of interest is the su- 
perdifferential, since either the subdifferential is empty or it coincides with the su- 
perdifferential and the function is differentiable. 

We define the value function of problem (2.1)-(2.2) as 

(2.8) V(t0,x0) = ini{g(x(T;t0,x0,7))| 7 : [*o,T] ^ U is measurable }. 

The result below will be applied in the next section. We denote by D+V(t, x) the 
superdifferential of V(t, •) at x. The proof of the Proposition below is given in [3]. 

Proposition 2.6. Assume (2.4) and let (t0,x0) G [0,T) x X. Then, for all a G [0,1), 

D+V(t0,x0) c D{Aa) & D-V(t0,x0) C D(Aa). 

Under additional assumptions on the data, the value function V is semi-concave 
in (t,x) on [0,T) x X. More precisely, the following result is obtained in [3]. 

Theorem 2.7. Assume (2.4), and suppose that there exists a G (0,1] such that, for 
all R> 0 and for some constant CR > 0, 

' W    /(")■) 7) *s differentiable and 

(2.9) 
Äj(i.*.7) "?&(*.!/,7)   <CR(\x-y\ + \t-s\r 

'for all s,t£[0,T\,x,ye BR(0),7 € U\ 

{ (it)   g(x) + g(y) - 2g(^) < CR\x - y\1+a,    Vx, y G BR(0). 

Then for any r > 0 there exists Cr > 0 such that 

(2A0)V(t1,x1)+V(t0,x0)-2V^^,^^)<qCA\h-t0\ + \x1-x0\Y^ 

for all tut0 G [0,T - 1] and all xx,x0 G Br(0). 

We conclude this section with few remarks about the Dynamic Programming equa- 
tion (1.4) of a Mayer optimal control problem. As we recalled above, (1.4) is satisfied 
in a suitable generalized sense, as V is in general not differentiable and the coefficient 
of the linear term {DxV(t,x),Ax) is defined only for x G D(A). However, we know 
from Proposition 2.6 that D+V(t,x) C D(Ae) for all 6 G [0,1). Moreover, every 
trajectory of (2.2) enters the fractional domain D(Al~e) as soon as t > t0. Therefore, 
all the terms in the following equality are well defined. 
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Theorem 2.8. Assume (2.4), (2.9). Let x*(-) be an optimal trajectory of problem 
(2.2)-(2.1) andOe (0,1). Then, 

(2.11) - Pt + {Ae
Px, A^x^t)) + H(t, x*(t),Px) = 0 

for all t G (t0,T) and all (jh,px) <= D+V{t,x*(t)). 

The above result is all we need to know about equation (1.4) in the sequel. For its 
proof, see [3], Theorem 5.2. 

3. An Optimality Condition 

We now show that the results of the previous section, toghether with some hy- 
potheses on the control set and on the dynamics / in the state equation (2.2), can 
be used to study the structure of the singular set of the value function V associated 
with a Mayer optimal control problem. 

In addition to the Dynamic Programming equality (2.11), the proof of our main 
result is based on some notions of convex analysis. These results are adapted from 
[4], where they were obtained in a finite dimensional set-up. 

We recall that the support function to a convex set K C X is given by 

aK(p) = sup(k,p). 
keK 

If k G K, the normal cone to K at k is the set 

NK(k) = {p e X : <p, k - k) > 0 Vfc G K}. 

Moreover, given a convex set K, we consider the smallest affine set that contains K. 
This set is called the affine hull of K and is denoted by aff(Ä"). The relative interior 
of a convex set K is defined as the interior which results when K is regarded as a 
subset of its affine hull aS(K). 

Lemma 3.1. Let K\,K2 C X be bounded closed convex sets and suppose that K2 is 
not a singleton. Then the following two properties are equivalent: 

(i)     there exists k G K\ such that K2 C NKl (k) ; 

(3-1) («)   oKl (Xpo + (1 - A)pi) = \aKl (po) + (1 - X)crKl fa) 
Vp0,Pl£K2,V\e{0,l}. 

Proof.   From the definition of normal cone 

P G NKl(k) <^=> aKl{p) = {p,k). 

This yields that (i) implies (ii). 
Conversely, let us suppose that (ii) holds. Let p be a point in the relative interior of 

K2. Since Ki is a weakly compact set and the map k —> (k,p) is weakly continuous, 
there exists k G Ki such that aKl (p) = (p, k). 

By definition, 

(3.2) aKl{p)>(p:k),WpEK2. 
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Let us suppose that there exists p0 G K2 such that <TKI(PO) > {Po,k}. Since p is 
in the relative interior of K2, there exist P\ & K2,pi ^ p, and A G (0,1) such that 
p = Xp0 + (l-\)pi. Then 

aKl(pi) = (1 - A)
_1

(CT*I(P) - XaKl{Po)) < (1 - A)"1^- Xpo,k) = {pi,k), 

in contraddiction with (3.2). It follows that (3.2) holds as an equality for every 
p<=K2- Therefore K2 c NKl (k). ■ 

We denote the segment from a point x to a point y as 

[x,y] = {Xx + (l-X)y\Xe[0,l]}. 

Theorem 3.2. Assume (2.4), (2.9) and let x*(-) be an optimal trajectory of problem 
(2.2)-(2.1) such that 

(3.3) f(t, x*(t), U) is a closed convex set with boundary of class C1 

for any t G (to,T). Then, 

(3.4) dimD+V(t, x*(t)) < 1,    V^ G (to, T). 

Moreover, for any t G (tQ,T) there exists p(t) G E x X and ß(t) G [0,1] such that 

D+V(t,x*(t)) = [ß(t)p(t),p(t)]. 

Proof. Fix t G (to,T). Then either dimD+V{t,x*{t)) = 0 or dimD+V(i,a:'(t)) > 0. 
Clearly if the first case holds there is nothing to prove. Let us consider the second 
case. Assume that dimD+V(t,x*(t)) > 1 and take two elements (pt,px) and (pt,Px) 
in D+V(t,x*(t)). Consider^ = Xpx + {1-X)px, X G [0,1]. Then, since D+V{t,x*(t)) 
is a convex set, (pt,Px) e D+V(t,x*(t)). Recalling that 

H(t,X*(t),px) = CTf(t,x*(t),U)(Px), 

we evaluate equation (2.11) at (pt,Px) to obtain 

o-f(t,x*(t),u){Xpx + (1 - X)Px) = 

pt - (A9(Xpx + (1 - X)p'x), A
l~ex*(t)) = Xaf{tiX,{tlu)(px) + (1 - X)afittX.{t),u){Px)- 

Therefore, on the sections of D+V(t,x*(t)) at the level pt, o-f(t,x*(t),u){-) is a linear 
function. By Lemma 3.1 and assumption (3.3), we derive that p'x = ppx for some 
p > 0. We now evaluate equation (2.11) at (pt,px) and (j>t,Px) to obtain 

<rs(t^(t),u){px) + {Aepx,A
1-ex*{t))   =   pt 

and   po-f(t,x*{t),v){px)
Jr P^p^A1-^*^))   =   pt. 

Hence, 

<TfWt),u)(Px) + {AWA^x'it)) = p[jf(t^(t),u){px) + {Aepx,A
l-ex*{t))}, 

which yields p = 1. Therefore, for any pt there exists at most one px such that 
(PuPx)£D+V(t,x*(t)). 
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Let p°{t),pl{t) G D+V(t,x*(t)) be such that 

p°   =   min{pt\3px:  (px,pt) G D+V(t,x*{t))} 

and   p\   =   max{pt\3px:  (px,Pt) eD+V(t,x*(t))}. 

By the convexity of the set D+V(t,x*(t)), we derive that there are no points px 

such that (pt,Px) G D+V(t,x*(t)) with pt < p° or pt > p]. On the other hand, for 
any pt such that p° < pt < pj, there exists at least a px so that (pt,px) belongs to 
D+V{t, x*(t)). Moreover px is unique since we proved before that on any section of 
D+V(t, x*{t)) at the level pt there is only one px, hence dimD+V(t,x*(t)) < 1. This 
yields D+V(t,x*(t)) = \P°(t),p1(t)}. 

We now prove the last statement of the theorem. Plugging p° = p°(t),pl = pl{t) 
and px = Xp° + (1 - A)pJ, A G [0,1] in equation (2.11) we obtain 

-p? + (AYX, A'-Sx*(t)) + a^^uM) = 0, 

-p\ + (A'PIA
1
-

6
!*®) + omx,(tW){px) = 0, 

-tf + (AYX, A^sx*(t)) + cif^uvM) = 0. 

From the above equations we derive 

°f(t,x*{i),U){Px) = ^f(t,x'(t),U){Px) + (1 - >^)Vf(t,x*(t),U)(Px)- 

Therefore, af(tx*(t) u)(~) is linear when it is restricted to the ortogonal projection of 
D+V(t,x*(t)) on X, denoted by Ilx{D+V{t,x*{t))). Hence 

UX(D+V(t,x*(t))) = [ß(t)pl,px}, 

for some ß{t) G [0,1], which yields px = ß{t)px. Again from equation (2.11) we get 
p® = ß(t)p] and the proof is concluded. ■ 

Remark 3.3. The above Theorem holds for any real Hubert space X such that 
dim X > 1. However, if dim X = 1, then assumption (3.3) is meaningless. In 
this case we only require that f(t,x*(t),U) ^ {0} for all t G (to,T), in order to 
assure that <Jf(t,x*(t),u) ¥" 0. 

Remark 3.4. The last statement of the above Theorem shows that D+V(t, x*(t)) 
must be a radial segment, contained in a half-line starting from the origin. This fact 
is a very strict requirement and suggests that, even for Mayer problem, the value 
function might be differentiable along optimal trajectories provided that f(t, x, U) is 
sufficiently smooth. This question is, however, still an open problem. 

The above argument heavily relies on assumption (3.3), that allows to use the 
Hamilton-Jacobi-Bellman equation (2.11) to study D+V. However, such a condition 
is also necessary for an estimate like (2.11) to hold true, as we now show with the 
following example. 

Example 3.5. We consider the state equation in X = R2 

x'(s) = 7i(s)x(s),    s G [t,T],    x(t) = x 
y'(s)=l2{s)y{s),   se[t,T],   m=y- 
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with U = [0,1] x [0,1]. Notice that assumption (3.3) is not satisfied on xy = 0. The 
value function V is defined as 

V(t,x,y) = mf{x{T)+y(T)\ (71,72) : [t,T\ -> U measurable}. 

Then is not difficult to see that 
x + y x,y>0 

x < 0, y > 0 
x > 0, y < 0 V(t,x,y) = 

eT tx + y 
x + eT"ty 
eT t(x + y)   x,y < 0 

We note that the (unique) optimal trajectory at (0,0) is given by x(t) = 0, y(t) = 
0, t E [0,T]. Moreover, by Proposition 2.4, we have 

0)}, 

3. 

D+V(t, 0,0) = co {(1,1,0), (eT~\ 1,0), (1, eT~\ 0), {eT~\ eT~\ 

and so dim D+V{t, 0,0) = 2 for all t G [0, T). 
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1. Introduction 

During the ten last years, many papers have been devoted to Pontryagin principles 
for control problems governed by partial differential equations (see [18], [6]). In the 
presence of state constraints, Pontryagin's principles are often proved thanks to the 
Ekeland's variational principle (applied to problems in which state constraints are 
penalized), coupled with methods of spike perturbations. To apply the Ekeland's 
variational principle, the space of controls Vad endowed with the so-called Ekeland 
distance, must be complete. This assumption of completeness is in general not satis- 
fied if Vad is a subset of a lALebesgue space with 1 < p < oo (see [14]). This is the 
reason why most applications of that method deal with bounded controls. 
Extensions to problems with unbounded controls are considered in [14], [12], [19]. The 
idea is to use perturbations whose difference with an optimal solution is bounded in 
a ZAspace with 1 < p < oo. Extensions of [14], [12] are given in [11]. The method 
in [19] has been improved in [20] by considering perturbations whose difference with 
an optimal solution is bounded in L°°. 
In this paper we want to show that the method developed by Li-Yong [17], [18] and 
by Casas [6] (first introduced by Li-Yao [16]), and extended to unbounded controls in 
[19], [20], can also be extended to problems with integral control constraints (see the 
beginning of Section 3.2). Let us explain what is new. In [11], [12], [20], the sets of 
admissible controls are patch complete in the sense introduced by H. O. Fattorini [12] 
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(that is, a perturbation of an admissible control, over a subset of small measure, by 
an other admissible control, is still admissible). Notice that constraints of the form 
\\V\\LP < C do not correspond to a patch complete subset of IP if 1 < p < oo. Here 
the novelty is that we still obtain a Pontryagin's principle, even in cases when the 
set of admissible controls is not patch complete. When the set of admissible controls 
is not patch complete, we cannot use, as in [20], perturbations whose difference with 
an optimal solution is bounded. This is the reason of another difficulty because 
there is a gap between convergence properties implied by the Ekelend variational 
principle (Lemma 3.1) and convergence properties necessary to prove some continuity 
properties of the cost functional (see [6], Theorem 5.1 and [20], Lemma 3.1). Contrary 
to [6], [20], here we only prove a lower semicontinuity property (Proposition 3.1, ii) 
under some convexity condition of the cost functional with respect to the control 
variable (observe that this convexity condition is not needed in [6], [20]). 
For simplicity, we present this extension for problems governed by semilinear elliptic 
equations, but the same kind of results can be obtained for problems governed by 
semilinear parabolic equations as those considered in [6], [13], [19], [20]. 

2. Setting of the Problem 

Let Q, be an open bounded subset of RN (N > 2) with a Lipschitz boundary T, q, 
r and f denote positive numbers satisfying 

q> —,    r > r > N - 1 y      2 
We consider a second order differential operator defined by: 

JV 

Ay = -J2 DiidijfäDjy), 

(A denotes the partial derivative with respect to xt) with coefficients oy belonging 
to L°°(Q) and satisfying for some m0 > 0 

N 

Y, aij(x)tei ^TOol£l2  for a11 ?eRjv anda-e- xeü- 
s,J=l 

We consider the following boundary value problem: 

dv 
(2.1) Ay + $(x,y) = 0 in Q,       —^ + V{s,y,v) = 0 on I\ 

The function $ (resp. *) is a Caratheodory function from ftxR (resp. from T xR2) 
into R. For almost every x £ Q, (resp. almost every s G T and every v G K), $(x, •) 
(resp. \P(s, -,v)) is of class C1 and we have the following estimates 

\$(x,0)\<Mi(x),    0<a0<<S>'y(x,y)<M1(x)r1{\y\), 

|*(s,0,t;)| <M2(s)+miM,    0 <b0 <%(s,y,v) < (M2(s)+m1\v\)ri{\y\), 

where Mi G Lq(Q), M2 G Lr(T), m1 is a positive constant, and r\ is a nondecreasing 
function from R+ into R+ (we have denoted by §'y the partial derivative of $ with 
respect to y, we adopt in all the sequel the same kind of notation for other functions). 
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In addition, we assume that the pair (a0,b0) satisfies the ellipticity condition (Em) 
stated below. 

We say that a pair of nonnegative functions (a, b) G Lq(fl) x Lr(T) satisfies the 
ellipticity condition (Em) if: 

{Em)     inf{^ [ / (aijDjyDiy + ay2) dx+ f by2 ds]\y G H1^)} >m> 0. 
||2/||ffi(fi) -to -/r 

Remark 2.1. Since a and b are nonnegative functions, if Q is connected, the ellipticity 
condition (Em) is satisfied for some m > 0 if and only if (a, b) is not identically zero. 

Remark 2.2. For every v G Lr(r), equation (2.1) admits a unique weak solution in 
H1^) n C(Cl) (see Section 2). 

We consider the following optimal control problem: 

(P)      ini{J(y,v) \ (y,v) G (H1^) D C(fi)) x V, (y,v) satisfies (2.1)-(2.2)}, 

where 
J(y,v) = / F(x,y(x))dx + / G(s,y(s),u(s))ds, 

(2.2) /(x, y(x)) < 0       for every x G Ü, 

V = {vG Lr(T) | v(s) G K(s),   f g(s, v(s))ds = 0,   f h(s, v(s)) ds<0}, 

where K is a measurable multimapping from T with closed and nonempty values into 

We suppose in the sequel that F (resp. G) is a Caratheodory function from Oxl 
(resp. from T x R2) into R. For almost every x G Q, (resp. almost every seT and 
every v G R), F(x, •) (resp. G(s, •,?;)) is of class C1 and we have 

|P(x,0)| < M3(x),    \Fy(x,y)\ < Af3(ar)r7(|i/|), 

0 < G(s,0,v) < M4(s) + mi\v\r,    \G'y{s,y,v)\< (M^s) + m^vf)^), 

where M3 G ^(Q), M4 G ^(T), my and 77 are the same as before. For almost 
every s G T and every y G R, G(s,y, •) is convex on R. The functions g and /i are 
Caratheodory functions from T x E into R satisfying 

|s(s,v)| < M4(s) + mx\vf,    -M4(s) -mi|t;|f < h(s,v) < M4(s) + mi\v\r, 

mi and M4 are the same as before. We also suppose that the function / : Ü x R —► R 
is continuous and that for every x G Cl, f(x, •) is of class C1. 

The main result is the following Pontryagin principle. 

Theorem 2.1. If(y,v) is a solution of (P), there then exist (ü,ß) G R+ x M(£l) and 
p belonging to W1>T(fi) for alll<r < N/(N - 1) such that 

(2.3) (v,ß)^0,     fl>0,     </I,/(•,£(•)) W)xc(fi)=0, 
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f   A*p+&y{x,y)p = i?Fy(x,y)+ßnfy(x,y) into, 

1 9^7 + % (s> V> v)P = vG'v{s, y, v) + ßrfy{s, y)    in T, 
(2.4) 

(2.5) J H{s,y(s),v(a),p(s), P)ds < J^W(a,y{s),v(s),p{s), v)ds 

for every v G V, where H{s,y,v,p,u) = i/G(s,y,v) + p$(s,y,v), A*p = 
-T,fj=\Dj{aij{x)Dip), ßn is the restriction of ß to ft and ßr is the restriction of ß 
toT.' 

3. Technical results 

3.1. State equation. Adjoint equation. 

Theorem 3.1. For every v G Lf(T), there exists a unique weak solution yv G ff1 (ft) n 
L°°(ft) of (2.1). This solution belongs to C(ft) and we have 

\\Vv\\w((i) + \\Vv\\c{n) < Ci(l + IMUf(r)), 

where C4 depends on f but does not depend on v. Moreover, the mapping v i—> yv is 
continuous from Lr(T) into C(ft). 

Proof. See [1]. 

Let (a, b) G L9(ft) x Lr{T) be a pair of nonnegative functions satisfying (Em). We 
consider the following boundary value problem 

dp 
(3.1) A*p + ap = ßn in ft, + bp = ßT in I\ 

where ß = ßn + Mr is a Radon measure on ft. We shall say that p G W1A(Ü) is 
solution of (3.1) if (ap,bp) G Lx(ft) x L1^), and if : 

/ (J2 aijDipDjip + apip) dx+     bipp ds = (ß, ip) M(n)xC(n) 

for every <p G W1,00(ft). Following [1], we have 

Theorem 3.2. For every pair of nonnegative functions (a, b) G L9(ft) x 17 (T) satis- 
fying (Em) and every ß G .M(ft) there exists a unique solution p G W1,x(ft) of f3.1,) 
satisfying 

j p{Ay + ay) dx + 7 p{~ + by) ds = (ß, y)j 
Jn JT    an A 

for every y G {y G if1 (ft) | Ay G L9(ft), ^ G Lr(T)}. Moreover, this solution 
belongs to W1,T(Q) for every 1 < r < N/(N—1), and there exists a positive constant 
C5 = C5(T), not depending on a, b and ß, such that 

Ibllw^cfi) < CVIIMIIA^ö)- 
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Proof. The proof is given in [1], Theorem 4.2. It is well known that (3.1) can admit 
more than one solution [21]. However, there is a unique one satisfying the Green 
formula stated in Theorem 3.2.   □ 

We also need in Section 3.3 the following regularity results. 

Theorem 3.3. For every pair of nonnegative functions (a, b) G L?(f2) x Lr(T) sat- 
isfying (Em) and every <fr G Lg(Q), ip G Lr(T), there exists a unique weak solution 
y G H1^) of the equation: 

dy 
Ay + ay = 4>  in f2,      -r \-by = ip   onT, 

this solution belongs to Ca(Cl) for some 0 < a < 1 and we have the following estimates 

IMIc(fi) < C6(||0||L«({I) + IMlL-(r)), 

l|y||c«(fi) < CV(||^||i.(n) + IMU'oXl + l|a|U'(fi) + PWL^D), 

where C§ and CV are independent of <f>, ip, a and b. 

Proof. The first part is proved in [1]. Thanks to the first estimate, the second one 
can be proved with regularity results in [15]. 

3.2. Metric space of controls. In methods developed in [4], [6], [18] to prove a Pon- 
tryagin principle the set of admissible controls Vad is endowed with the so-called 
Ekeland distance dE. To apply the Ekeland variational principle, the space (Vad, dE) 
must be complete and the mapping v i—> yv must be continuous from this metric 
space to C(f2). Approximate optimal solutions are then characterized by an ap- 
proximate Pontryagin's principle thanks to some method of perturbation. When the 
control set is defined by 

Vad = {ve L°°(r) | v(s) G K for a.e. s G T) 

(where if is a compact subset in R), the above conditions are satisfied and the 
method of spike perturbations can be used to recover a Pontryagin's principle [4]. 
In our case, (V, dE) is not complete, the mapping v i—► yv is not continuous from 
(y,dE) into C(Q), and the method of spike perturbations cannot be used because a 
spike perturbation of an admissible control is not necessarily admissible. 
An other kind of perturbation, first introduced by Li-Yao [16], has been developed 
by Li-Yong [17], [18], and by Casas [6]. This kind of perturbation, called diffuse 
perturbation, has been adapted in [20] to treat problems with unbounded controls. 
The idea is to use diffuse perturbations whose difference with an optimal solution is 
bounded in L°°(r). Here, by using (as in [19]) diffuse perturbations whose difference 
with an optimal solution is bounded in Lr(r), we can consider problems with integral 
control constraints. 

We define a new metric space in the following way. Let v be in V (v will be an 
optimal boundary control that we want to characterize). For 0 < M < oo, let us set: 

V(M) = {v G V | \\v - v\\Lr{r) < M}, 

and define: 
dE(vi,v2) = C-^s G T I Vl(8) + v2(s)}). 
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Lemma 3.1. Let M > 0 and {{vn)n,v} C V(M). If (vn)„ tends to v in (V(M),dE), 
then (vn)n tends to v in Lr(r). 

Proof. The proof is immediate if we remark that, since 1 < f < r, we have 

\v- vn\fds < Wv-VnWlr^idEiv^v))^1 < (2MY(dE(vn, v))r-^. D L IT 

Proposition 3.1. For every M > 0, we have : 
i) (V(M),dE) is a complete metric space, 
ii) the mapping which associates yv with v is continuous from (V(M),dE) into 

C(fi), 
ii) the mapping which associates J(yv,v) with v is lower semicontinuous from 

(V(M),dE) intoR. 

Proof. 
i) Let (vn)n be a Cauchy sequence in (V(M),dE). Following [9], we can prove 

that (v„)n converges for the distance dE to some measurable function v such that 
v(s) € K(s) for a.e. s e Y. As in the proof of Lemma 3.1, we can prove that (vn)n is 
a Cauchy sequence in Lf(T). Moreover, (vn)n is bounded in Lr(T). Therefore {vn)n 

converges to v strongly in Lr(T) and weakly in Lr(T). On the other hand, by using 
Fatou's Lemma (applied to the sequence of functions h(-,vn{-)) + M^-) +mi\vn{-)\r), 
it yields : 

/ h(s, v) ds < lim inf / h(s, vn) ds < 0, 

and we also have 
\\v - v||Lr(n < lim inf \\vn - ü||x,r(r) < M. 

Moreover, we have limn /r g(s, vn) ds = 0 and (because (vn)n converges to v in 
I/(T)) there exists a subsequence, still indexed by n, such that limn /r g(s, vn) ds = 
fr g(s, v) ds. Therefore, /r g(s, v) ds = 0 and v belongs to V(M). 

ii) This assertion follows from Lemma 3.1 and from the continuity result of Theorem 
3.1. 

iii) We consider {{vn)n,v} C V(M), such that (vn)n converges to v for the metrics 
dE. Recall (see (i)) that (vn)n also converges to v for the weak topology of Lr(T). We 
complete the proof thanks to the assumptions on F, G and thanks to the continuity 
results stated in (ii). (In particular, we use the convexity of G{s,y, ■) and estimates 
on G to prove the lower semicontinuity of v \—► J(yv, v).) D 

3.3. Diffuse perturbations. 

Lemma 3.2. Let vi, v2 and v3 be in V and let y\ be in C(fi). For every 0 < p < 1, 
there exists a sequence of measurable subsets {E™)n in Y such that 

(3.2) CN~\En
p) = pCN~\Y), 

(3.3) /      his, Vi) ds+ f   h(s, v2) ds = (1 - p) f h(s, uj) ds + p    h(s, v2) ds, 
Jr\E£ JEJ; Jr Jr 

(3.4) /      g{s,v1)ds+ [   g(s,v2)ds = (1 - p) [ g(s,v1)ds + p    g(s,v2)ds, 
yr\£" JE™ Jr Jr 
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(3.5) /       \vi-v3\rds+       \v2-v3\rds 
JT\E^ JE£ 

= (1 - p) / |i>i - v3\r ds + p     \v2- v3\r ds, 

(3.6) /   (G(s,y1,v2)-G{s,yl,v1))ds = p f{G(s,y1,v2)-G{s,y1,v1))ds, 
JEJ} JT 

(3.7) -XEn -1- 1    weakly-star in L°°(T)    when n tends to infinity, 
p    p 

where \En «s the characteristic function of E™. 

Proof. This lemma is an easy consequence of the Lyapunov convexity Theorem (see 
[20]). 

Theorem 3.4. Let v\, v2 and v3 beinV. For every 0 < p < 1, there exists a measur- 
able subset Ep C T such that 

(3.8) CN-\Ep) = pCN-\T), 

(3.9) [     h(s,vr)ds+ f  h{s,v2)ds = {l-p)     h(s,vi)ds + p    h(s,v2)ds, 
JT\EP JEp JT JT 

(3.10) f     g(s,vi)ds+f  g(s,v2)ds = (l-p) I g{s,vi)ds+p    g{s,v2)ds, 
JT\EP JEP JT JT 

(3.11) /      \vi-v3\rds+ [   \v2-v3\rds 
JT\EP JEP 

= (1 - p) j \vi -v3\rds + p     \v2 -v3\rds, 

(3.12) / {G{s,y1,v2)-G(s,y1,v1))ds = p [(G(s,yuv2)-Gfayuv^ds, 
JEp JT 

(3.13) yP = yi+pz + rp, lim -||rp||c(f2) = 0, 

(3.14) J(yp, vp) = J(j/i, «i) + pAJ + o{p), 

where 
M_f«i(s)   ifser\Ep, 

Vp{S)~\v2(s)   ifseEp, 
yp and y\ are the weak solutions of (2.1) corresponding respectively to vp and to vi, 
z is the weak solution in JY1(0) of 

dz 
Az+&y(x,y1)z = 0   inQ,     ^-+^'y{3,yi,vi)z+^(3,y1,v2)-'9{3,yuv1) = 0    inT 

and 
A J = j (G'y(s, yi,vx)z + G{s, yu v2) - G(s, yu vx)) ds. 
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Proof. Let (Ep)n be the sequence of measurable subsets defined in Lemma 4.1. We 
p 

set 
\Vl(s)   ifSer\££, 
[v2(s)     if seEn

p. 

Let y™ be the solution of (2.1) corresponding to vn
p and let z be the function defined 

in the statement of Theorem 3.4. It is clear that Q = (y™ - yi)/p - z is the weak 
solution in H1 (fi) of 

AC + an
pC = rpinn,       ^ + bn

p( = ^ + cpnp on I\ 

where a£ = /Q
1
 ^(a^ + t(j£ - Vl))dt, bn

p = $ %(s,Vl + t(yn
p - yi),v

n
p)dt, <j>np = 

(%(x,Vl)-a;)z,^ = (%(s,y1,v1)-bn
p)z, ipn

p = (l-lxE?)(^(s,yi,v2)-^(,s,y1,v1)) 

and XE* is the characteristic function of En
p. We denote by C™1 the solution in if 1(fi) 

of 

önA 

by C2 the solution in Ü^Q) of 

AC + an
pC = Oinfl,       ^- + bn

p( = cpn
ponT, 

and by £™ the solution in ü1(fi) of 

ö£ AC + of = 0 in Ü,       -^ + b£ = (pn
0 on I\ 

on A 

where a = &y(x,yi), b = $'y(s,yi,vi). We also have 

d(£n - Cn2\ 
A(Cp-Cf)+an

p(CP~Cf) = (an
p-a)CP infi,       \J* ^^(g-g2) = («£-&)£onr- 

Notice that (a,b) and (a™,6") satisfy the ellipticity condition (Em). Thanks to The- 
orem 3.3, we have 

(3.15) IIClcw < C6(||^||z*(n) + ll^lU'(r)), 

(3.i6)      ye;2 - $\\m < o>(K - a\\w) + \K - biMKWcw- 
The operator T which associates £, the solution in if1^) of 

* + * = °>     £ + 6^ = ^ 
with cp, is continuous from 2/(r) into Ca(tt) (see Theorem 3.3). Since the embedding 
from Ca(Cl) into C(fi) is compact, the operator T is compact from Lr(T) into C(fi). 
Because of (3.7), for every 0 < p < 1, the sequence {<p")n converges to zero for 
the weak topology in Lr(T), therefore the sequence (£")„ converges to zero in C(Q). 
There then exists an integer depending on p, denoted by n(p), such that 

\\CP
{p)\\cm<p- 
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Since we have 
^-vtfds-j^-vtfda, 

(
V
^

P)
)P converges to v1 in Lr(T) and (y"(p))p converges to yi in C(Q). Prom assump- 

tions on $ and *, we deduce that, (0™(p))p, (a"(p) - a)p both converge to zero in 
Lq(Q.) and (V>p(p))P, (&p(p) - b)p both converge to zero in Lr(T) when p tends to zero. 
Thus, thanks to (3.15) and to (3.16), we get 

lim ||C(p)||c(n) < lim ||CP"(p)1||c(fi) + 1™ \\ifp) ~ t?p)2\\c(n) + lim \\CP
{p)\\m = 0. 

Now we set Ep = ££<">, \rp = (^ and vp = V<P\ conditions (3.8) to (3.13) are 
clearly satisfied. Moreover, taking into account (3.12), (3.13) and the definition of vp 

we easily verify (3.14). D 

Remark. Thanks to (3.9) and to (3.10), we conclude that, even if V is not patch 
complete (in the sense given in Introduction), for every vi,v2 G V, we can construct 
a diffuse perturbation {vp)p, of vi by v2, such that vp still belongs to V. By setting 
v3 = v in (3.11), we can see that for M > 0, if vuv2 G V(M) then vp belongs to 
V(M), for every 0 < p < 1. 

4. Proof of the Pontryagin principle 

4.1. Penalized problem. Let | • \c^ be a norm on C(Cl), equivalent to the usual norm 
II • llc(fi)> sucn tnat (C(d), | • |C(jj)) be strictly convex and M{Q), endowed with the 
dual norm of | • \c^) (denoted by | • \M(ä)), be also strictly convex (see [8], Corollary 
2 p. 148, or Corollary 2 p. 167). We have 

(AI\    v W + Pz)+\c(n)-W)+\c{n) (4.1) hmsup — — 
P\O, p 

= max{(£,z)M{ä)xC(n) I £ G 9|(-)+lc(n)(v)} 

for every tp, z G C(fi), where 9|(-)+lc(n) is the subdifferential, of |(-)+lc(n)) in the 
sense of convex analysis [7] and (•)+ = max(-, 0). Therefore, for a given ip G C(Cl) we 
have 

(4.2) <e, ^-y>A^(fl)xc(ft) + |y+lc7(ft) < N+b{ft) V £ G ö|(-)+b(n)M, V z G C(fi), 

|£IM(ö) < 1    for every f G ö|(-)+|c(ü)(^)- 
Moreover it is proved in ([17], Lemma 3.4) that, since <9|(-)+lc(fi)(¥>) is convex in 
M(Q) and (M(Cl),\ ■ \M(ü)) 

is strictly convex, then if ip+ ^ 0, 9|(-)+lc(n)(v) is a 

singleton and |(-)+lc(fi) is Gäteaux-differentiable at ip. 

Let (j/,ü) be a solution of (P). We consider the penalized functional 

Jn(y,v) = {[(J(y,v) - J(y,v) + ^)+]2 + |(/(-,y(-)))+lc(Q)}" 

and, for every n > 0, we define the penalized problem 

(Pn) mi{Jn(y,v) | (y,w) G C(Cl) x V(M„), (y,v) satisfies (2.1)}, 
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where Mn = rS*f~&. It is easy to see that for every n > 0, (y,v) is ^-solution of 
(Pn). Thanks to the Ekeland's principle, there exists vn e V(Mn) such that 

(4.3) dE(vn,v) < -,       Jn(yn,V„) < Jn{Vv,v) + ~dE(vn,v) 

for every v e V(Mn) (yn and yv are the solutions of (2.1) corresponding respectively 
to vn and to v). 

4.2. Proof of Theorem 2.1. 
1. Approximate optimality conditions for the boundary control vn satisfying (4.3). 

Let v0 be in V.   For n0 large enough, v0 <E V(Mn) for every n > n0.   Apply- 
ing Theorem 3.4, we deduce the existence of measurable subsets E%, such that 

(4.4) f      h(s, vn) ds+ [   h(s, v0) ds = (1 - p) / h(s, vn)ds + p    h(s, v0)ds, 
Jr\E£ JE? JT JT 

(4.5) [      g(s,vn)ds+ [   g(s,v0)ds = (l-p)     g(s,vn)ds + p    g(s,v0)ds, 
JT\En JEn JT JT 

(4.6) /       \vn — v\rds+       \v0 — v\rds 
Jr\E£ JE'n 

= {\ — p) I \vn -v\r ds + p     \v0 - v\r ds, 

(4.7) ypn = yn + pzn + rp
n,   lim-||<||c.(fl)=0, 

(4.8) J{yp
n, <) = J{yn, «„) + pA Jn + o(p), 

where v^ is defined by 

(49) Vn[S) ~ \ v0(s)      on EZ, 

yp
n and yn are the state variables corresponding respectively to v? and to vn, zn is the 

weak solution of 
dz 

Azn + &y(x, yn)zn = 0 in Ü,    —— + V'y(s, yn, vn)zn = *(s, yn, vn) - *(s, yn, v0) on T, 

and 

AJn = J Fy(x,yn(x))zn(x)dx + J^G'y(s,yn(s),vn(s))zn(s)ds 

+ J [G(s, yn(s), v0{s)) - G{s, yn(s), vn(s))] ds. 

On the other hand, thanks to (4.4), (4.5) and (4.6), for every n > n0 and every 
0<p<l,vP belongs to V(Mn). If we set v = v? in (4.3), it yields 

(4 10) lim UVn,vn)-JntäO < I£iv-i(r), 
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Taking (4.1), (4.8) and the definition of Jn into account, we get 

(4.11) - unAJn - {pn, fy(yn)z„)M(n)xC(Ci) < -^^(F) 

where 

(4.i2) Vn={Hyn,vn)-j{y,v) + ±y 

0 if not. 

For every n > n0, we consider pn the unique weak solution of 

r   A*pn + %(x,yn)pn = vnFy{x,yn)+pnüfy(-,yn) in ft, 
(4.14) 

{ 1^7 + *y(s' 2/™'U")P» = vnG'y{s,yn, vn) + pnrfy(-,yn)   on I\ 

which satisfies the Green formula : 

(4.15) J Pn(Ay + &y(x, yn)y) dx + Jpn(g^- + %(*, Vn, vn)y) ds 

= J unFy(x,yn)ydx + j vnG'y(s,yn,vn)y ds + (pn, fy(-,yn)y}M{n)xC(ti), 

for every y G {y G H1^) | Ay G L"(Q), ^ G Z/(r)} (//„n is the restriction of pn 

to ft and ^„r is the restriction of pn to T). With this Green formula, with (4.11) and 
the definition of A Jn, we get 

(4.16) J [v„G(s, yn, vn) - pn^(s, yn, vn)] ds 

< f[unG{s,yn,v0) -pn^{s,yn,v0)}ds + -/:N-1(r) 
Jr n 

for every n>n,Q. 

2. Convergence of sequences {vn)n, (pn)n and (p„)n- 

We remark that 

Kli<(ft) + vl = 1- 
The sequences (i/„)„ and (/y)n are respectively bounded in E and in A* (ft), there 
then exist P G R+, p e M(Q) and a subsequence, still denoted by (vn,pn)nj such 
that 

(4.17) vn —> P,   ßn —^ p weakly star in .M(ft). 

Let 1 < r < N/(N - 1) for which the following embeddings are continuous 

Wl>T{Q) -> Z/(ft),   Wl-^{T) -> Lf'(r). 

From Theorem 3.2, it yields 

Ibnllwi.T(n) <C5{pn\\Fy(-,yn)\\Li^) + Vn\\Gy{-,yn,vn)\\Li(r) + \Pn\M(ä)\fy(->yn)\c(n)}- 
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Since the sequences (f„)„, (/x„)„, (yn)n and (vn)n are bounded respectively in R, 
.M(Q), C(fi) and in J/(r), the sequence (p„)„ is bounded in W1,r(fi). There then 
exist p e W'1'T(fi) and a subsequence, still denoted by (p„)„, such that (pn)n weakly 
converges to p in Wl>T(Q). Therefore, (p„)„ weakly converges to p in L9'(f2) and the 
sequence of traces (p„|r)n weakly converges to the trace p|r in Lr'{T). Let us prove 
that p is a weak solution of equation (2.4). 
Let (p be in W1:°°(Q,), for every n > n0, we have : 

t    N f 
(4.18) / { Y, aijDiPnDjf + &y(x, yn)VnV} dx +     Wy(s, y„, vn)pn<p ds 

= / unFy(x,yn)ipdx+     vnG'y(s,yn,vn)<pds + (iin,fy(-,yn)(p)M(n)xC(n), 

and the Green formula (4.15). Moreover, since /r \vn - v\r ds < (dB(vn,ü))V:M^ < 
(i)1^?, (vn)n converges to v in If(T) and (y„)n converges to y in C(Cl). Thanks to 
assumptions on $, ty, F, G, /, we have 

lim ||$J,(-,y„) -$;(•, y)||w(n) = 0,    lim ||i^(-,i/„) - i^(-,i/)IUi(n) = 0, 

\im\\$>y(;yn,vn)-y'y(;y,v)\\L?{T)=0,    lim\\G'y{-,yn:vn) - G'y{-,y,v)\\LHr) = 0, 

lim\fy(;yn)-fy(;y)\cm=0. 

Thus, by passing to the limit in (4.18) and in (4.15), we prove that p is the unique 
weak solution of the equation (2.4) which satisfies the Green formula : 

(4.19) f p(Ay + &y(x,y)y)dx + JFp(^ + V'y(s,y,v)y)ds 

= J 9F'y{x,y)ydx + J^ PG'y(s, y,v)yds + (ß, fy{-,y)y)M(n)xC(n), 

for every y € {y £ if 1(fi) \ Ay e Lq{Q), ^ G Lr(T)}. Because of uniqueness of the 
weak solution of (2.4) satisfying (4.19), we can deduce by classical arguments that p 
is independent of r and that all the sequence (pn)„ weakly converges to p in Wn,T(fi) 
for every 1 < r < iV/(iV - 1). 

3. Pontryagin's principle. 

Notice that (vn)n tends to v in If(T). By letting n tend to infinity in (4.16), with 
Fatou's Lemma (applied to the sequence of functions vnG{-, 0, vn{-))) and the conver- 
gence results stated in step 2, we obtain 

(4.20) J H{s, y(s), v{s),p(s), v)ds< j^ H(s, y(s), vQ(s),p(s), v) ds, 

for every VQ G V. 
On the other hand, from the definition of \xn and from (4.2), we deduce 

(4.21) {iin,z- f{-,Vn))M{ü)xC(ä)< 0   for every z G {z G C(fi) \z<0}. 

By passing to the limit in this expression, we obtain 

(4.22) (ja, z - f(;y))M(ä)xC(n) < 0 for every z G {z G C(ß) \z<0}, 
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which is equivalent to ß > 0 and (ß,f(-,y))M(£i)xc(n) = 0- To prove that (ü,ß) is 
nonzero, we recall that v\ + \ßn\2Mm) = -*-• K ^ > 0, the proof is complete. If v = 0, 
we can prove that |y5|^(n) > 0 by using limn \ßn\M(n) = 1- Indeed there exists a ball 
B(z; 2e) C {z G C(Q) \ z < 0} centered at z and with radius 2e > 0. We can choose 
zn E 5(0; 2e) such that {ßn, Zn)M(H)xC{n) = Aßn\M(ü)- Since 2 + zn G {2; G C(fi) | 
z < 0}, from (4.21), we get 

(ßn, Z + Zn- /(•, Vn))M(Ö,)xC(Q.) < 0. 

By passing to the limit, we get 

e+ < ß, z - /(•, y))M(n)xc(n) < 0, 

thus ß ^ 0. 
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The Damped Wave Equation 
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ABSTRACT. We consider the wave equation in a bounded domain with zero Dirichlet data 
and damping proportional to velocity and pose the problem of minimizing, with respect 
to damping, the maximum, over all initial data of unit energy, of the infinite time integral 
of the instantaneous energy. We show the minimum to exist over those dampings that 
uniformly avoid zero and infinity. We provide an exact minimum over the class of constant 
dampings and proceed to show it to be a critical point over the class of bounded dampings. 

1991 Mathematics Subject Classification.   35B20, 35L05, 47A55 
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1. Introduction 

In [1] we minimized two standard merit functions, decay rate and greatest total 
energy, over a class of finite dimensional damped linear systems. Analogous results 
for the decay rate in the context of the damped wave equation can be found in [5], 
[4], and [2]. In this note we minimize, over a, the greatest total energy associated 
with the damped wave equation, 

(1.1) utt(x,t)-Au(x,t) + 2a(x)ut(x,t)=0,    u(-,t) e H%(Q) 

on the open bounded connected set del11. The greatest total energy is simply 
the maximum, over all initial data of unit energy, of the infinite time integral of 
the instantaneous energy. In order to make these notions precise let us take U(t) = 
[u(t) ut(t)] and interpret (1.1) as Ut = A(a)U where 

A(a)=(°    _7
2a),        D(A) = (H2(ü)nH1

0(n))xH^), 

is densely defined in the Hilbert space X = HQ(Q) X L2(Q) with inner product 

({f,g},[u,v])x = l^f-Vü + gvdx. 

This A(a) is the infinitesimal generator of a semigroup T(t; a) and U(t) = T(t; a)V 
solves the Cauchy problem Ut = A(a)U, U(0) = V. The associated instantaneous 
and total energies are, respectively 

/*oo 

E(t) = \\T(t;a)V\\2x    and    J    \\T(t;a)V\\2xdt. 

This work was supported by NSF Grant DMS-9258312. 
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The greatest total energy, 71(a), is now the supremum of the total energy over all 
initial data, V, of unit energy. That is, 

(1.2) 71(a) =   sup    /    \\T(t;a)V\\2xdt. 
\\v\\x=iJo 

In §2 we show that 7i(o) is finite over the class of bounded nonnegative a and in fact 
that it attains its minimum there. In §3 we compute 7j(a), by hand, for constant a 
and so readily identify the best constant damping. In §4 we show this best constant 
to be a critical point of % in the class of bounded a. 

2. Existence of an Optimal Design 
We denote by {\n}%Li the increasing sequence of eigenvalues of -A on Hg(Q) and 

by {qn}%Li the corresponding orthonormal base of eigenfunctions. 
We choose 6 small and positive and define 

ad = {ae L°°(ft) : 6^/X1/2 < a{x) < VV(2<5)} 

From the literature we may conclude, for such a, that Tx(a) is finite and that the 
total energy may be represented as a quadratic form. More precisely, 

Theorem 2.1. If a € ad then 

(2.1) l|T(i;a)|||w<4e-^*,    t > 0, 

and there exists an Hermitian positive semidefinite endomorphism B(a) on X for 
which 

(2.2) 2(B(a)A(a)V, V)x = -\\V\\2X,        We D(A), 

and 

(2.3) {B(a)V:V)x=jo    \\T(t;a)V\\xdt,        MV € X. 

Proof. The estimate in (2.1) follows directly from Theorem 1 of Rauch [8]. Datko [6] 
has shown that (2.1) is a necessary and sufficient condition for the existence of the 
stated B. ■ 

As ad is compact with respect to the weak* topology we need only show a >-> 7i (a) 
to be weak* lower semicontinuous. Let us denote weak* convergence by -^, weak 
convergence by —*, and strong convergence by —>. 

Theorem 2.2. // {an} C ad and an -^ a in L°°{Q) then T(t; an)V -> T(t; a)V in X 
for each V £ X. 

Proof. Recalling Kato [7, IX.2.16] we note that it suffices to show that A~1(an)V —> 
A~\a)V. Set V = [f,g] and define [yn,zn} = A-^o^^g] and [y,z] = A-\a)[f,g} 
so 

[yn, zn] = [A-1(2anf + g), f]    and    [y, z] = [A-\2af + g), /]. 

As a result, 

(2.4) \\A-\an)V - A-\a)V\\x = 2||VA-1(an - a)/||2, 
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where || • H2 denotes the L2(fl) norm. If wn = A_1(a — an)f then wn satisfies 

-Awn = (an - a)f,    wn e H^ü). 

Upon integrating each side against wn we find 

(2.5) Kill < ^\\Vwn\\\ < _i=||/||2||u,B||2. 

As a result 

KI|2<T4=||/||2    and    ||Vtü„||2<^||/||2. 
ö\Ml 0 

Prom these bounds it follows that wn —>■ w in HQ(Q). Hence, passing to the limit in 
the weak form 

/ Vro„ -V4>dx= I {an - a)f<t>dx       \/<p e H^{ü) 
Ja JQ 

we find 

[ Vw-Vcßdx = 0       V<l>eHl(p), 
Jn 

i.e., w is identically zero in fi. As wn —> 0 in L2(0) it now follows from (2.5) that 
wn -> 0 in H^(Q). Recalling (2.4), we have shown that A-1{an)V -> A~1{a)V in X. 

■ 

Theorem 2.3. If an — a in L°°(Q) iAen 71(a) < liminf TAan). 

Proof. It follows from the previous theorem that ||T(i;a„)V||^ -> ||T(i;a)V||^ for 
each t > 0. In addition it follows from (2.1) that t i-> ||T(£;a„)V||;f is uniformly 
dominated by an integrable function. The Lebesgue dominated convergence theorem 
now yields 

/•OO /*0O 

/    \\T(t;an)Vfxdt^        \\T(t;a)V\\xdt, 
Jo Jo 

or, in the language of (2.2), (B(an)V,V)x —> (2?(a)V, V)x- By the nature of the 
supremum in (1.2) it follows that to each e > 0 there corresponds a unit vector Vs 

for which 

Ti{a)-e < {B{a)Ve,Vs)x. 

In addition, on taking the limit inferior of each side of {B(an)Ve,Ve)x < 7i(an) we 
find 

(B(a)Ve,VE)x ^HmMTM, 
*     x   ' ' n—>oo 

and hence 
7i(a) — e < liminf 7i(a„). 

As e is arbitrary our claim has been established. ■ 

Corollary 2.4. a >—> Ti(a) attains its minimum, on ad. 

As a candidate for the global minimizer we now carry out the exact minimization 
of 7i over constant a. 
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3. The Case of Constant Damping 

In a manner analogous to the case of friction damping of finite dimensional systems, 
see [1, §2], we obtain an explicit representation of B(a). 

Theorem 3.1. // a is constant then 

i-aA"1   -|A-1N 

21 la 
B(a)=[*   i} \ 

Proof. It is a simple matter to check that this operator is an Hermitian, positive 
semidefinite endomorphism on X satisfying (2.1). There are a number of means by 
which this B(a) may be derived. One way is to note that for smooth solutions the 
instantaneous energy obeys 

E(t) = -jf {±E(t) + JQ(uut + au2) dx} = -jt(B(a)U(t), U(t))x, 

and hence that the total energy is simply (B(a)V, V)X- A second approach is to note 
that B(a) is (formally) a solution to the associated Liapunov equation A*(a)B(a) + 
B(a)A(a) = -I. ■ 

The eigenvalues of B(a) are 

(3.1) T±B(a) = - + —^—-,    n = l,2,.. 

and its (unit) eigenvectors are 

(3.2) V±„ = ß±n[l    c±n]qn 

where 

(3.3) c±n = -a± \Ja? + Xn    and   p±n = (A„ + c2
±n) 

1/2 

The greatest of the T±n(a) is %(a) and, as Ai is simple, so too is Ti(a). With this 
explicit expression in hand we may easily establish (compare [1, Theorem 2.4]) 

Corollary 3.2. The greatest total energy, Ty : K+ -> E+; is strictly convex and attains 
its global minimum at 

w*- 
Its minimum value is 

rl(*)=  ' ^+2-/^- 
/AT 

We record for future use the fact that 

(3.4) c\ = 2h2 + Ai 

follows on substitution of ä into (3.3) 
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4. The Perturbed Operator 
We now show that a is in fact a critical point for Tx : ad —> R+. In particular, we 

shall show that, for each b G L°°(fi), 

7i(a + K&) =TI(ö) + 0(K
2
),    as«;->0. 

In fact we compute the gradient, &T\, at an arbitrary admissible constant, a.   To 
begin, we fix b G L°°(fi) and consider A(K) = A0 + KA\ where 

^
0=
(A   -2a)     and   Al=\0   -2b) 

We denote by T(t; K) the semigroup generated by A(K) and recall, see, e.g., Kato [7, 
IX.2.1], that, for fixed i,KH T(t; K) is entire and 

oo 

n=0 

where T0(t) is the semigroup generated by A0 and 

Tn+1{t) = f T0{t - s)A1Tn{s) ds,    n > 1. 

If K is sufficiently small then a + nb will lie in ad and so, by Theorem 2.1, there exists 
a B(a + K,b). We now express this as a power series in K by following the construction 
in Datko [6]. In particular, we define, 

rt °° 
B{t;n)= / T*(s;/c)T(s;K)ds=^Kn

JB„(i), 

where 

B0(t) = f T0*(s)To(s) ds    and   £„(*) = f {T^s)Tn{s) + T:(s)T0(s)} ds. 
Jo Jo 

As t —> oo each J5„(t) converges in the strong operator topology to an operator Bn. 
It follows that 

oo 

B(a + Kb) = Y, KnBn 
n=0 

is, in the language of Kato [7, §VII.7], a selfadjoint bounded-holomorphic family of 
operators. As such we may avail ourselves of the perturbation series of [7, §11.2.2]. 
In particular, as 71(a) is simple, the greatest eigenvalue, 71 (a + ab), of B(a + Kb) 
satisfies 

oo 

T1(a + Kb)=T1(a) + J2^nTin\ 
n=l 

where 7^     may be expressed in terms of the eigenvectors of B{a). More precisely, 

^1) = {B1V1,V1)X   and   7^ = (BMMU + £ ^Vfx 
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where Tn and Vn are the eigenvalues and eigenvectors of B{a), see (3.1)-(3.3). Ac- 
cordingly we begin the evaluation of 

roo 

(BMMx = Jo   ({TZiWm + TZitWWMx dt 
roo 

= 2/    (TiWuToWVÖxdt. 
Jo 

It will be convenient to suppose that a2 < X1 and to label the frequencies 

= y/% Wi = \IX3 -'«2- 

As Vi is a constant multiple of qx and A0 is ,a constant coefficient operator it follows 
that T0(t)Vi is simply 

T (+\v - ,, e~
at (   «»O"!*) + (ci + a) än(wi*)M    \ 70WVi - Mie      ^ cog(wii) _ (aCi + Ai) sin(Wli)/w J 9i 

For ease of reference let us express this as 

Regarding Ti(i)Vi we must first compute T0(t -s)J41T0(s)Vi. This is the solution, at 
time t - s, to W = ^oW subject to 

W(0) = A1T0(s)V1 = -2bqiy[(S) /j 

We find, via separation of variables, that 

W{t - .) = -2e-«-V,Mg (ca(n(t !t^4^ -DM-) *<*•*>- 

Hence, 

Um = Jl W(t - S) ds = -2 £ hfflj Qiibqi, Qjh 

where 

aj(t) = jT e-^-V^s) sin^i - s))M ds. 

It follows that 

{T^V^ToitWx = -2{6g1)9l)26W 

where 
6(<) = Aiai(t)yi(t)+ai(tyi(t). 

It is important to note that & is simply a product of sums of terms involving sine, 
cosine, and the exponential and so may be integrated by hand. Its length (greater 
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than one page) however precludes us from effectively presenting it here and compels 
us to adopt a symbolic means (Maple) in the final evaluation of 

,   . /-OO /'OO 

T}1) = (BiVuVjx = 2 /   ft^ToitWxdt = -4<6g1>gi>2 /    Si{t)dt 
Jo Jo 

If b = 1 this indeed agrees with what one finds on differentiating the 71 offered in 
(3.1). In addition, from (3.4) it follow that T^ = 0 when evaluated at the best 
constant, a. 

As to whether or not a is a local minimizer we note that components for the 
calculation of T^ are all here. The complexity of the terms however has rendered 
this calculation a formidable exercise. 

Even with T}
2
' in hand one has only a local result. A numerical study, analogous 

to [2], is currently underway. 
Finally, we note that V H-> (B(a)V, V)x is a Liapunov function, see [3], with which 

one may study the stability of the trivial solution of (1.1) with a right hand side 
depending on u, ut, and Vu. 
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1. Introduction 

Let fl be a bounded open subset of M^ of class C2m, T > 0, UJ a nonempty open 
subset of fi, / a continuous real function and k G N such that 0 < 2k < m. The 
main goal of this work is the study of the approximate controllability of the following 
semilinear equation with Dirichlet boundary conditions: 

f yt + (-A)my+(-A)kf(y) = h + vXu    in Q := fi x (0,T), 

(L1) |   0 = °    '    ^M.-.-.m-l on£:=dQx(0,T), 

[ 2/(0) = 2/o in fi, 

where v is a suitable output control, \w is the characteristic function of w, v is the 
unit outward normal vector, h £ L2(0,T : H~m(Q)) and y0 € L

2(fl). Due to the term 
Xu the controls are assumed supported on the set Ö := u x (0, T). Problems as (1.1), 
sometimes known as Cahn-Hilliard problems, appear, with m = 2, in the study of 
phase separation in cooling binary solutions and in other contexts generating spatial 
pattern formation (see [6], [8] and the references cited therein). 

We recall that problem (1.1) satisfies the approximate controllability property, at 
time T with states space X and controls space Y, if the set 

{ y(T, ■ : v) : veY, y solution of (1.1)} 

is dense in X. 
The main goal of this paper is to extend the approximate controllability results on 

second order problems, m = 1 and k = 0 (see e.g. [9], [10] and [7]) to the case of 
higher order equations for which the maximum principle does not hold, in general. 

Preceding Page Blank 
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Our first result gives a positive answer when / is assumed to be sublinear at the 
infinity: 

Theorem 1.1. Assume that f satisfies the following conditions: there exist some pos- 
itive constants C\ and C2 such that ' 

(1.2) \f{s)\ <ci + c2|s|   forallseR 

and 

(1.3) there exists f(s0) for some s0 G ffiL 

Then problem f l.lj satisfies the approximate controllability property at time T with 
states space X = L2(Q) and controls space Y = L2(ö). 

In contrast to the above result, we shall prove that when / is superlinear the 
approximate controllability property does not hold in general, as explained in Section 
4. Therefore if, for instance, f(s) = |s|p_1s Theorem 1.1 gives a positive approximate 
controllability result for 0 < p < 1. The results of section 6 provide a negative 
approximate controllability answer when 1 < p < 00. The similar alternative was 
obtained in Diaz-Ramos [7] for second order parabolic semilinear problems. 

We remark that the existence of solutions in the class 

y G L2(0,T;H?(Ü)) n C([0,T];L2(n)), f(y) G L2(Q), Akf(y) G L2(0:T;H~m(n)), 

is also obtained as a by-product of Theorem 1.1 for a suitable subclass of controls. 
The uniqueness of solutions can be easily proved if, for instance, / is nondecreasing 
or Lipschitz continuous. Those uniqueness results are not needed in our arguments. 

2. Approximate controllability for an associated linear problem 

In order to prove Theorem 1.1 we follows the same scheme of proof than in [9], [10] 
and [7]. We define the function 

f(s) - /(so) 
9(s) 

so 

From assumptions (1.2) and (1.3) we have that g G L°°(M) nC(R). The conclusion 
will be derived from a fixed point argument. As /(s) = f{s0)+g(s)s-g(s)s0, we shall 
start by considering the approximate controllability for a linear problem obtained by 
replacing the term f(y) by 

g(z)y + f(so) - g(z)s0, 

where z is an arbitrary function in L2(Q). Notice that when z = y this expression 
coincides with f{y) and that if we denote g(z(t, x)) := a(t, x) and 

(2.1) h(a) := -(-A)fc/(so) + ("A)fc(a(i, x)s0), 
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then a G L°°(Q) and h(a) G L°°(0,T;H-2k(n)). More in general, given a G L°°(Q) 
and h(a) denned by (2.1), we consider the approximate controllability property cor- 
responding to the linear problem 

(2.2) 

yt + {-A)my+(-A)k{a(t,x)y) = h+h(a)+uXu    in Q := fix(0,T) 
cPy 

2/(0) = Jfo 

0 .7=0,1, ,m - 1 onE:=<9ftx(0,T), 

in fl. 

Before stating an approximate controllability result for this problem, following Lions 
[14] and Fabre-Puel-Zuazua [9], [10], we consider e > 0 and yd G L2(Q) and we 
introduce the functional  J = J(-;a,yd) : L2{Q) —> R defined by 

(2.3) J(^o;a,2/d) = J(v°) = 2 (X W,x)\dxdt + e II ¥>   IU2(n) ■ / yd<P°,dx 
Jn 

where ip(t, x) is the solution of the backward problem 

(2.4) 

(2.5) 

' -ipt + {-A)mip + a(t, x)Ak<p = 0    in Q := ü x (0,T), 

^f = 0    ,    j = 0,l,...,m-l     onS:=9nx(0,T), 

_ ip(T) = ip° in Q. 

To study the above backward problem we introduce the space 

W := {y G £2(0, T; ff0
m(Q)), yt G L2(0,T; #"m(fi))}. 

The following result will be used later 

Proposition 2.1. Given h G L2(0, T; H~~m(Q)) and y0 G L2(Q), there exists a unique 
function y G W satisfying 

-A)my + a(t, x)Aky = h        inQ, 

0    ,    j = 0,1,... , m — 1     onS, 

Furthermore, we have the estimate 

(2-6)    ||y||£2(0,T;fl™(n)) + |l2/t||L2(0,T;ff-™(n)) < C (|N|L2(0,T;H-™(n)) + ||2/o||i2(n)) , 

where the constant C depends only on M :=|| a ||L°°(Q) (provided that Q, T and m 
are kept fixed). Moreover, if h G L2{Q), the solution y also satisfies that 

(2.7)      y G L2{S, T; H2m(Q))    and   yt G L2((S, T) x fi)   for all 6 G (0, T). 

Proof. For all n G N we define yn+1 as the solution of the following iterative problem 

y?- 
„n+l 

0    ,    j = 0,l,...,m-l 

( y"-{V) = y0 

-n+1 -J- (-A)myn+1 = h- a(t,x)Akyn    in Q, 
9J2/ on S, 

in Q, 
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where y°(t) := 0 for all t G [0, T]. The existence of a solution yn &W can be found, 
for instance, in Theorem 3.4.1 of Lions-Magenes [15]. Thus, for all n G N\{0,1}, 
yn+l _ yn satisfies 

[ (yn+1 ~ Vn)t + {-A)m(yn+1 - yn) = -a(t, x)Ak(yn - y""1)    in Q, 

(2.8)        d3(yn+1-yn) =0        i = 0,l,...,m-l onS, 

[ (yn+ -yn)(o) = o infi 

and therefore 

y™+l _ yn G jyl,2m(Q) .= #1(0) T; tf(fi)) n L2(0, T\ H2m{tt)) 

and 
II 2/"+1 - Vn \\H^(Q)< CI || aAV - 2/""1) Hi*«) 

(see, for instance, Theorem 4.6.1 of Lions-Magenes [16]). Then, since 

H1'2m{Q)cC{[0,T\;Hm{n)) 

with continuous embedding (see, for instance, Theorems 1.3.1 and 1.9.6 of Lions- 
Magenes [15]), there exists c2 = c2(T) such that 

II yn+1 ~yn ||c([o,T];^(n))< c2 || aAV - y^1) \\L2{Q) . 

Farther, it is clear that we can choose C2 = C2(T) such that for all t G [0,T] 

II yn+1 - yn ||c([o,*]:«y(ii))< C2 || aAk(yn - yn~l) \\vm)xn) ■ 

Hence, 

II (yn+1 - Vn){t) \\
2
H^)< (C2M)2 jT || A V " 2/"-1) W ll£2(Q) dr,    for all i G [0, T] 

and therefore, by using the Poincare inequality, there exists a constant K, indepen- 
dent of M, such that 

II (yn+1 - yn)it) ||^(n)< {KMf fo  || (yn - jT ^(r) ||^(n) dr,    for all t G [0, T}. 

Then, for every t G [0, T] we deduce that 

II (yn+1 - yn)(t) II^(n)< ^^T^jlf,1-- -fj'1"(y2" yl)(Tn) "^ rfr" • • •dTl 

< (/^M2)"-1 jfjf • • ^Tn" II y2 - 2/1 llc([o,T];^(Q)) dr„... dn 

<(^M2rl ir_l|y2_yill2([0iTw(n)) 

{K2M2T)n^      2       !   2 

- —(n-1)!— " V ~V  llc(i°.T]^om(n))' 

which implies that 

II Vn+1 - yn ||c([o,T];fly(fi))-> 0     as rw 00 

and therefore, by (2.8), we deduce that 

|| (yn+1 ~ Vn)t h*(o,T;H-™(n))^ 0     as n ^ 00. 
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Then, there exists y eW such that 

yn —> y   in W  as n —> oo. 

In order to prove that y satisfies (2.5) we point out that 

Amyn^Amy   in L2(0,T;ff-m(Q))   as n -> oo, 

Afcj/n -> Afcy   in L2(fi)   as n -> oo, 

and 
!/?-»&    inL2(0,T;F-m(fi))   as n -► oo. 

this implies (passing to the limit) that y is the solution of (2.5). In order to prove 
(2.6), we "multiply" in (2.5) by y. Then it is easy to see that 

(2.9)      ||l/||z,2(0,T;Hff'(n)) + ||2/t|U2(0,T;ff-m(fi)) 

< C (||/i||L2(o,T;ff-">(fi)) + ||2/olU=(n) + IMU2(Q)) • 

Furthermore, 

II y(t) ||i2(n)<  (|| 2/(0) \\h{n) +C2 || /l \\Uo,T;H-"iO)))+<%f0   II ^(S) ll£2(ü) <*S. 

Then, applying Gronwall's inequality (see, for instance, Lemma 4 of Haraux [11]), 
we deduce that 

II y(t) |||2(fi)< (II y(o) ||£*(n) +c2 || /i ||!2(0,T;ff-m(fi))) e
C3t       V i 6 [0,T]. 

From here, we obtain that 

II V ||L2(Q)< C4 (\\h\\tf(p,T;H-™(.Ci)) + ||2/o||i,2(n)) 

which implies, together with (2.9), inequality (2.6). Now, thanks to (2.6) and the 
linearity of Problem (2.5), we deduce the uniqueness of solution. 

Finally, if h G L2(Q), since y(6) G #0
m(ft) for all 6 G (0,T), taking y{6) as initial 

datum and applying Theorem 4.6.1 of [16], we get (2.7). ■ 

As usual in Controllability Theory we shall use a unique continuation property for 
solutions of the dual problem (in our case Problem (2.4)). 

Lemma 2.1. Let UJ be a nonempty open subset ofQ.. Assume that 

^L2(0,T;TO) n C([0,T];L2(U)) 

satisfies (2A) and that p = 0 in Ö = w x (0, T). Then ip = 0 in Q. 

Proof. From Proposition 2.1 (applied with backward time) we deduce that <p G 
L2(0,T- S;H2m(ü)) for all 6 G (0,T). Then Lemma 2.1 follows from Theorem 3.2 
of Saut-Scheurer [17]. ■ 

The following two results are easy adaptations (by using Lemma 2.1) of the similar 
ones given in [9], [10] for second order parabolic problems. 
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Proposition 2.2. The functional J(-;a,yd) is continuous, strictly convex on L2(£l) 
and verifies 

(2.10) liminf     y™d)>e. 
MIL*«!)-«»   II   ^°   IU2(fi) 

Further J(-;a,yd) attains its minimum at a unique point <ß° in L2(fl) and 

(2.11) £° = 0     «•    || yd ||L2(Q)< £. 

Proposition 2.3. Let M be the mapping 

M :   L°°(Q) x L2(Q)    ->    L2(ft) 
(a(t,x),yd)       —>     <£°. 

7/JB is a bounded subset of L°°(Q) and K is a compact subset of L2(Q), then M{B x 
K) is a bounded subset of L2(Q). 

In order to characterize the duality of problem (2.4), we recall that given a convex 
and proper function V:X—>MU{+oo}on the Banach space X, it is said that a 
element p0 of V belongs to the set 8V(XQ) (subdifferential of V at XQ € X) if 

V(x0) - V[x) < (po, x0-x)     VxGX. 

It is well known that that if V is Gateaux differentiable its differential coincides with 
its subdifferential and that x0 minimizes V over X (or over a convex subset of X) 
if and only if 0 G dV(x<f). Finally, if V is a lower semicontinuous function, then 
Po € dV(x0) if and only if 

i       \/ r     V(x0 + hx)-V(x0), ■. 
{Po,x) < hm — -^ —-(< +oo)     Viel 

h—>0+ ft 

(See, for instance, Aubin-Ekeland [3]). Coming back to the functional J we have: 

Lemma 2.2. For every tp° 6 L2(fl) (ip° =f= 0), if tp is the solution of (2A) satisfying 
(p(T) = ip°, we have that 

dJ(if°;a,yd) = {£ e L2(fl), 3v & sgn(<p)xo satisfying 

f Z{x)Q°{x)dx   =   (j \y(t,x)\dZ\ (J v{t,x)8{t,x)dZ 

+e I M UP   e\x)dx - I yd(x)ö°(x)dx V0° e L2(ft)}, 
f  IU2(fi) 

where 9 is the solution of (2A) satisfying 6{T) = 8°. 

Proof. It is an easy modification of Proposition 2.4 of [10]. 

Let us prove the approximate controllability property for an special version of the 
linear problem given in (2.2). 
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Theorem 2.1. 7/|| t/d ||L2(n)> £ and(p is the solution of (2A) corresponding to (p(T) = 
(fp, with (p° minimum of J(-;a, t/d)- Then there exists v G sgn{(p)xo such that the 
solution of 

yt + {-A)my + (-Ak)(a(t, x)y) =|| (p ||Li(0) *>Xo   in Q, 

g=0   (j' = 0...(m-l)) onE, 
y(0) = 0 inQ, 

satisfies 

y(T) =yd- e—f 
f  IU2(fi) 

and then \\ y(T) - yd ||i,2(fi) = £■ 

Remark 2.1. In the case || yd ||L
2
(£2)< £, if we use the null control, we obtain y = 0 

and therefore || y(T) - yd ||z,2(n)< £■ 

First of all we prove the existence and uniqueness to problem given by (2.2). 

Proposition 2.4. Assumed y0 G L2(n), h G L2(0,T;i/"m(Q)) and a(t,x) G L°°(Q), 
there exists a unique function y €W satisfying 

f yt + {-A)my + Ak(a(t,x)y) = h inQ, 

(2-13) 0 = 0    ,    j = 0,l,...,m-l onE, 

{ 2/(0) = 2/0 in n. 

Moreover, we have the estimate 

(2-14)     \\y\\L2(0,T;Hp(n)) + \\yt\\L2{0,T;H-™(n)<C (||/i||L2(0,T;i/-'"(n)) +||2/o||l,2(n)J , 

where the constant C depends only on M (provided that Q, T and m are kept fixed). 

Proof. For all n G N we define again yn+1 as the solution of the iterative problem 

y«+i + (-A)myn+1 = h- Ak(a(t, x)yn)    in Q, 

-§—=0    ,    j = 0,l,...,m-l onE, 

2/n+Y(0) = 2/o in fi, 

where y°(t) := 0 for all t G [0,T]. The existence of a solution yn &W can be found, 
for instance, in Theorem 3.4.1 of Lions-Magenes [15]. Thus, for all n G N\{0,1}, 
2/n+1 ~~ Vn is solution of 

[ (yn+1-yn)t + (-A)m(yn+l-yn) = -Ak[a(t,x){yn-yn-1)]    inQ, 

(2.15) dJ(yn+
dJ

yn)=0    ,    j = 0,l,...,m-l onE, 

[ {yn+1 - 2/n)(o) = o in n 

and therefore (see again Theorem 3.4.1 of Lions-Magenes [15]) yn+1 — yn eW and 

(2.16) || yn+l - yn \\w< ci || a{yn - y^1) \\L,(Q) . 
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Then, since W C C([0,T];L2(fi)) with continuous embedding (see, for instance, [12] 
or [15]), we have that 

II yn+1 -Vn \\c(\0,nmn))< c2 II a(yn - yn~l) ||L2(Q) . 

Further, as in the proof of Proposition 2.1, we can choose C2 = C2(T) such that 

II yn+1 ~ Vn ||c([o,t];L^))< C2 || a(yn - y^1) \\m(o,t)xn),    for all t G [0,7]. 

Hence, 

II (yn+l - yn)(t) \\bm< (^M)2 jf || (y» - yn-l){r) ||22(Q) dr,    for all t e [0,71 

Then, for every t £ [0, T] we deduce that 

II (yn+1 -yn)(t) \\h{n)< (clM*)-1 f f ■ • ■r1 II (y2-y1)^) \\hw <&-„...dn 

< {C2
2M

2f-1 fj^1. . .fj~l || 2/2 - 2/1 ||c([0,T];L2(Q)) dT„ . . . dn 

<(c2
2Mr-1^^\\y2-y1\\lilo,nLHa)) 

< 
(CZM*T)»-1 „ „,2    ^ l[2 

(n-1)! 

which implies that 

y    ~y    llC([0,T];L2(n))> 

II yn+ - y \\c([o,n&mr 

and therefore, by (2.16), we deduce that 

|| yn+1 — yn \\w-* 0     as n —> oo. 

Then, there exists y &W such that 

yn -^ y   in VF  as n —> oo. 

The end of the proof is similar to the end of the proof of Proposition 2.1. ■ 

Proof of Theorem 2.1.   Using the subdifferentiability of J(.;a,yd) at <£° (^ 0 by 
(2.11)), we know that 

0 € <9J(£°), 

which is equivalent, from Lemma 2.2, to the existence of v £ sgn{Cp)xo> such that 

(2.17) -\\<p\Ww(jov{x,t)9{x,t)teä)   =    \\^£\\L2mL^{x)e°{x)dX 

- [ yd{x)9\x)dx. 
Ja 

On the other hand, as y € W, if we "multiply" by 9 in (2.12) we obtain, by (2.4), 
that 

(2.18) / y(T, x)9°(x)dxdt =\\ <p ||Li(0) (J v(x, t)9(x, t)dxdt 
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Then, from (2.17) and (2.18), we obtain 

/ y(T, x)9°(x)dxdt = I {yd{x) - e.®^    )9\x)dxdt    V 0° G L2{tt) 
Jn Jn ipu \\L

2
(ü) 

and we conclude that y(T) = yd — £,, ^n ,, • ■ 
II <P  IU2(n) 

Now we are ready to prove a linear version of Theorem 1.1 for problem (2.2) 

Corollary 2.1. Let || yd \\L
2
(ü)> £ and(p the solution of (2A) corresponding to (piT) = 

(p°, with <p° minimum of «/(•; a, yd - y(T; a, 0)), where in general y(t; a, u) denotes the 
solution of (2.1) corresponding to the control u. Then there exists v G sgn((p)xo 
such that the solution of 

yt + {-A)my + (-Ak)(a(t,x)y) = h + h{a)+ || (p ||Li(0) vxo   in Q, 

0 = 0  Ü = 0...(m-1)) onS, 

2/(0) = t/o *n 0. 

satisfies 

|| y{T)-yd ||L2(n)<e. 

Proof. We put y = L + F, where L = L(a) satisfies 

(2.19) 

Lt + {-A)mL + (-A*)(a(t,x)L) = h + Ä(a)   in Q, 

U=0  (j = 0...(m-l)) ■ onS, 
, L(0) =2/o in fi 

and Y — Y(a) is taken associated to the approximate controllability problem 

f Yt + (-A)mY + (-Ak)(a(t, x)Y) = u(a)Xo   in Q, 
djY 
— = 0  (j = 0...(m-l)) on£, 

y(o) = o m n, 

with desired state yd - L(T), i.e. such that || Y(T) - {yd - L(T)) \\< e. Notice that 
the existence of such a control u(a) is consequence of Theorem 2.1, In particular, 
if || yd - L(T) ||< e, we can take u(a) = 0 and if || yd - L(T) ||> e, then we take 
u(a) =|| (p(a) ||i,i(n) «(a), where v(a) G sgn(</3(a))xü and <p(a) is the solution of (2.4) 
with initial value M{ (a(x,t),yd - L(T)) ) defined in Proposition 2.3. It is obvious 
that such function y and such control u(a) lead to the conclusion. ■ 

3. Controllability for the nonlinear problem 

As mentioned before, we shall use a fixed point argument to prove Theorem 1.1. 
In fact we shall deal with multivalued operators. Let us recall a well-known result: 
the Kakutani's fixed point Theorem. The usual continuity assumption in other fixed 
pont theorems is replaced here by the following notion: 
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Definition 3.1. Let X, Y two Banach spaces and, A : X -> V(Y) a multivalued 
function. We say that A is upper hemicontinuous at x0 G X, if for every p € Y', the 
function 

X^KT(A(X),P) =   sup   <p,V>Y'xY 
yeA(x) 

is upper semicontinuous at x0. We say that the multivalued function is upper hemi- 
continuous on a subset K of X, if it satisfies this properties for every point of K. 

Theorem 3.1. (Kakutani's fixed point Theorem). Let K c X be a convex and 
compact subset and A : K —► K an upper hemicontinuous application with convex, 
closed and nonempty values. Then, there exists a fixed point x0, of A. 

For a proof see, for instance, Aubin [2]. 

Proof of Theorem 1.1. We fix yd G L2{tt) and e > 0. By using Corollary 2.1, for 
each z G L?{Q) and e > 0 it is possible to find two functions <p{z) G Ll{Q) and 
v(z) G sgn((p(z))xo such that the solution y = yz of 

f yt + (-A)my + {-A)k{g(z)y) = h + h{g{z)) + uXo   in Q, 

(3-1) g=0,i = 0,l,...m-l onS, 

1 2/(0) = 2/o in fi. 
(where u = u(z) = \tp(z)\Li(o)v(z)) satisfies 

(3.2) \y(T) - yd\L2(n) < e. 

Here ip(z) is the solution of (2.4) with initial value M( {g{z),yd - L(z\T)) ) (see 
Proposition 2.3) and a(t,x) = g(z), where is L(z;T) the solution of (2.19), with 
o = g(z), at time T . 

Lemma 3.1. The set 
{yd-L(z;T), z G L2(Q)}, 

is relatively compact in L2(Q). 

Proof of Lemma 3.1. Applying Proposition 2.4 it is easy to see that the set of solutions 
L{z) of 

(3-3) 

Lt + (-A)mL + {-Af(g(z)y) = h + h(g(z)) in Q, 
djL 
—r=0, j=0,l,...m-l onS, 

L(0) = 2/0 in "i 

satisfy 

(3.4) || L(z) \\w< K(l+ || t/o \\mn) + II h \\mo,T;H-™m) V z e L*(Q) 

with K > 0 independent of z. Recall that || g(z) ||L°°(Q)< M with M independent of 
z. Now, let L{zn) be a sequence of solutions (3.3) with zn G L2(Q). We must prove 
that there exists a subsequence (that we rewrite as L(zn)), such that 

|| L(zn; T) - L(zn+1; T) ||z,2(n)^ 0    as n -» oo. 
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By a compactness result due to Aubin [1], we know that 

W C L2(0,T;Hm-\n))  with compact embedding. 

Therefore, by (3.4), we can suppose that 

|| L(zn) - L(zn+1) ||£2(0]T.Hm-i(n))-> 0   as n ->■ oo. 

Further, it is easy to prove that L(zn) — L(zn+i) satisfies 

\\ L(zn;T) ~ L(zn+üT) \\lHny 

< - I   (Dk (g(zn)L(zn) - g(zn+i)L(zn+1)), Dk (L{zn) -L(zn+i)))H-k{n)xHk{n)dt 

+ 1   (Dk {g{zn)sQ - g(zn+1)s0), D (L{zn) - L(zn+1)))H-kmxHk{a)dt. 

Then, by (3.4), since k < m - 1 (notice that k = 0 if m = 1), 

|| L(zn- T) - L(zn+1; T) |||2(n)< K \\ L(zn) - L(^WfI) Hi2(o,T;H"-i(n))-* °   as n ^ co 

and the proof ends. ■ 

Completion of Proof of Theorem 1.1. Prom Lemma 3.1,. we obtain that yd — L(z; T) 
belongs to a compact set for all z e L2(Q) and sov by using Propositions 2.3 and 2.1, 
we obtain that 

(3.5) {|| tp{z) \\Li{0) v(z), z G L2(Q)}    is bounded in L°°(Q) 

Thus 

(3.6) Kx=   sup   || (p(z) ||LI(0)<OO. 
z£L2(Q) 

Obviously, u = u{z) satisfies 

(3.7) || u \\L,(Q)< K2. 

Therefore, if we define the operator 

A : L\Q) - V{L\Q)) 

by 
A(^) = {y satisfies (3.1), (3.2) for some u satisfying (3.7) }, 

we have seen that for each z € L2(Q), A(z) ^ 0. In order to apply Kakutani's fixed 
point theorem, we have to check that the next properties hold: 

(i) There exists a compact subset U of L2(Q), such that for every z £ L2(Q), 
A(z) C U. 

(ii) For every z £ L2(Q), A(z) is a convex, compact and nonempty subset of 
L2(Q). 

(iii) A is upper hemicontinuous. 
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The proof of these properties is as follows: 

(i) From Proposition 2.4 we know that, there exists a bounded subset U of W such 
that for every z £ L2(Q), A(z) C U. Now, to see that we can choose U compact we 
shall prove that the set 

y = {y satisfying (3.1) for some z £ L2(Q) and u satisfying (3.7)} 

is a relatively compact subset of L2(Q). But this is easy to prove by using that 

(3.8) W C L2{Q) with compact embedding 

(see Lions [12] or Simon [18]). 

(ii) We have already seen that for every z £ L2(Q), A(z) is a nonempty subset of 
L2(Q). Further A(z) is obviously convex, because B(yd, e) and {u £ L2(Q) : satisfying 
(3.7)} are convex sets. Then, we have to see that A(z) is a compact subset of L2(Q). 
In (i) we have proved that A(z) C U with U compact. Let (yn)n be a sequence of 
elements of A(z) which converges in L2(Q) to y £ U. We have to prove that y £ A(z). 
We know that there exist un £ L2(Q) satisfying (3.7) such that 

(3.9) 

yn + (_A)m|/n + (-A)*(s(;z)!/n) 

-£r = otj = o,i,...,m-i 
yn(0) = y0 

\yn(T) - yd\2 < e. 

h + h{g{z))+unxo inQ, 

on S, 

in Q, 

Now, by using that the controls un are uniformly bounded, we deduce that un -> u 
in the weak topology of L2{Q) and u satisfies (3.7) (see Proposition III.5 of Brezis 
[5]). Then, using (3.9) and Proposition 2.4 we can see that (yn)n converges to y in 
the weak topology of W (and so, by (3.8), strongly in L2(Q)). Therefore, passing to 
the limit in (3.9) we obtain 

f yt + (-A)my + (-A)k{g(z)y) = h + h{g(z)) + uXo    in Q, 
dJy 
^ = 0,i = 0,l,...,m. 

. y(o) = yo 

Further, vn — y — yn is solution of 

(3.10) 

v? + (-A)mvn + (-A)k(g(z)vn) 
djvn 

0 , j = 0,l,...,m-l 

■ u")xo 

vn{0) = 0 

on E, 

in Q. 

in Q, 

on S, 

in Q 

and satisfies vn £ W (see Proposition 2.4). Further, if we "multiply" in (3.10) by vn 

and integrate, we obtain that 

vn{T) \\2L2{n)< k f (u- un)xovndxdt -> 0   as n 
JCJ 

CO. 

Thus yn(T) converges to y(T) in the strong topology of L2(Q) and || y{T)-yd ||2< e. 
This prove that y £ A(z) and concludes the proof of (ii). 
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(iii) We must prove that for every ZQ G L2(Q) 

limsupa(A(zn),k) < a(A(z0),k), V k G L2(Q). 
L2(Q) 

Zn    >   ZQ 

We have seen in (ii) that A(z) is a compact set, which implies that for every n G N 
there exists yn G A(zn) such that 

a(A(zn),k) = / k(x,t)yn(x,t)dxdt. 
Jo 

Now, by (i), (yn)n C U (compact set of L2(Q)). Then, there exists y G L2{Q) such 
that (after extracting a subsequence) yn —> y in L2(Q). We shall prove that y G A(zo). 
We know that there exist un G £2(Q) satisfying (3.7) such that 

(3.11) 

yn+ (_A)myn + (_A)fc(5(zn)y") = h + h{zn) + Un
X0     m Q, 

djyn 
y   =0 , j = 0,l,...,m-l onS, 

yn(0) = 2/o 
I |yn(T) - yd|2 < e 

in Q, 

Then there exists u G L2(<3) satisfying (3.7) such that un —» u in the weak topology 
of L2(C). On the other hand, by using the smoothing effect of the parabolic linear 
equation (in a similar way to the proof of (ii)) and that g G L°°(R) PlC(R), we deduce 
that y satisfies (3.1) and (3.2) with z = z0 for some u G L2(Q) satisfying (3.7), which 
implies that y G A(^0)- Then, for every k G L2(Q), 

a(A(zn),k)= / k(x,t)yn(x,t)dxdt —> / k{x,t)y{x,t)dxdt 
JQ JQ 

<   sup    / k(x,t)y(x,t)dxdt = a(A(zo),k), 
yeA(zo) JQ 

which proves that A is upper hemicontinuous and conclude the proof of (iii). 

Finally, if we restrict A to K = conv(U) (the convex envelope of U), which is a 
compact set of L2(Q), it satisfies the assumptions of Kakutani's fixed point theorem. 
Then, A has a fixed point y G K. Further, by construction, there exists a control 
u G L2(Q) satisfying (3.7) such that 

(3.12) 

f yt + (-A)my + (-A)k(f(y)) =h + uXo in Q, 

0=0, j = 0,l,...m-l onS, 

2/(0) = 2/0 in ft, 
I \V(T) - ydh < e. 

Therefore, y is the solution that we were looking for. ■ 

Remark 3.1. Several generalizations seem possible.   For instance, the equation of 
(1.1) could be replaced by other ones with a more general nonlinearity 

yt + (-Ary + Y/(-&)ifi(y) = h- 
i=0 

VXu 
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or a more general lower order differential operator 

yt + (-A)my + L(f(y))=h + VXu„ 

with L suitable linear partial differential operator of degree lower than 2m. The key 
point in those generalizations is that the unique continuation result of Lemma 2.1, for 
the associated dual problem, remains true thanks to Theorem 3.2 of Saut-Scheurer 
[17] and the rest of arguments of the proof of Theorem 1.1 apply. 

4. Non-controllability for superlinear problems 

In this section we assume k = 0. We shall prove a result of non-controllability for 
a superlinear nonlinear term with ücfl. 

Theorem 4.1. Let p > 1 and let y(t;u) =y€ L2(0,T; tfm(fi)) f~l C([0,T];L2(£))) a 
function satisfying 

•f yt + (-A)my + M^y = uXu    in Q, 
{ y(0) = 2/o »n ft, 

associated to any "natural" boundary condition and with control u € L2{Q). Then 
we can choose yd G L2(Q) and e > 0 such that 

(4.1) || y(T; u) - yd \\ma)> £ for any u € L2(Q). 

In order to prove Theorem 4.1 we introduce, previously, some auxiliar functions. 
Given R > 0 we define, on RN, the functions 

£R(x) = (i?2 - \x\2)/R if \x\ < R,   £R(x) =0 if \x\ > R 

and 

(4.2) dR(x) =R- \x\  if |x| < R,   dR{x) = 0 if \x\ > R. 

It is clear that 

(4.3) dR(x) < £R(x) < 2dR(x) 

for all xeRN. 

The following result was proved in Bernis [4]. 

Proposition 4.1. Let s> 2m and R>0. Then, for each e>0 there exist a constant 
C depending only on N, m, s and e (thus independent of R) such that the following 
inequality holds for all y G H%C(M.N): 

((-A)»!,. ^/)ff-r(R.)X W) > (1 - e) fKN &\Dmy\2dx - C f^ ^y'dx. 

Remark 4.1. Since s > 2m, & G W?m'°°(RN). Hence & € C?(M.N) (see e.g. Corol- 
lary IX. 13 of [5]) and&u G H™(RN) (see e.g. Note 1X4 of [5]J. 
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Corollary 4.1. Let s>2m and R>0 such that B^Cfi. Then, for each e > 0 there 
exist a constant C depending only on N, m, s and e (thus independent of R) such 
that the following inequality holds for all y G Hm(Q): 

((-A)my,&v)H-mxH?v) * (i-£)Jn&\Dmy\2dx-cJüeR-
2my2dx. 

Proof. Let y G Hm(Q) such that y = y in Q, (such y exists by standar results: see, 
e.g., Chapter IX of Brezis [5]). Then, by Proposition 4.1, the inequality holds for y, 
but as BR c Q we obtain the result. ■ 

Theorem 4.2. Let p > 1, r = p + 1, y0 G L2(Q) and u G Lr'(Q). Then any solution 
y€Lr(Q)nL2(0,T;Hm(ty)of 

j yt + (-A)my + lyf-1!/ = u   in V{Q), 
{AA) \ 2/(0) = yo on Q, 

with any "natural" boundary condition, satisfies the local estimate 

sup   I   y{x,t)2dx+ [ {\Dmy\2 + \y\r)dxdt 
0<t<TJBR JBRX(0,T) 

K\l+ f \ufdxdt + f    y2
0dx) 

\        JBRlx(0,T) JBRI ) 

if BRl C tt and 0 < R < Ri. Moreover, the constant K depends only on N, m, p, 
R, i?i and T. 

Proof of Theorem 4.2. We take Xr = U{Q) n L2(0,T;#0
ra(fi). Then the equation 

of (4.4) is satisfied in X'r = Lr'(Q) + L2(0,T; tf-m(ft)). Then, if s > 2m, we can 
multiply (4.4) by £Ry with the duality product (•, -)x^xxr and we obtain 

2 iß   ^SRV
^' 

T^dX + ^~A}my' ^)i2(0,T;ff-'"(fi))xL2(0,T;ff0"'(Q)) 

+ (\y\p~1y^Ry)Lr'(Q)xLr(Q) 

=
 2JBR ^y°^2dx + ("' ^2/)i'''(Q)xL-(Q)- 

Now, from Corollary 4.1 it follows that 

< 

(4.5) 
< 

\f   ZRy(x,T)2dx+ I eR{\Dmy\2 + \y\r)dxdt 
Z JBR JBRx(0,T) 

C I   £,Ryo{xfdx + C f £R~2my2dxdt + C [ £'Ruydxdt. 
JBR

Ry0y   ' iBRx(0,T)SiI       " ißRx(0,T)SK   * 

By (4.2) and (4.3) we can replace in (4.5) £,R{X) by R— \x\ (modifying the constants). 
Further, writing s-2m = 2sjr + (s(r-2)/r) -2m, we can apply Holder's or Young's 
inequality with exponents q = r/2 and q' = r/r - 2 and we obtain 

I (R-\x\y-2my2dxdt 
JBRX(0,T) 

< e [ (R- \x\)s\y\rdxdt + K(e, q) f (R- \x\y-idxdt 
JBRx(0,T) JBRX(0,T) 
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with 
K(e, q) = —-.—r-rr    and   7 = 7: 

q'{qe)qlq r-2 
Hence, if we choose s > 7 - 1, the last integral is finite and equal to CRs+iV~7. On 
the other hand, we can apply again Young's inequality and we have 

/. 
(R — \x\)suydxdt 

BRx(0,T) 

<s [ (R- \x\)s\y\rdxdt + He,r) [ (R- \x\)s\u\r'dxdt. 
JBRx(0,T) JBRX(0,T) 

Thus, by changing the constants, we deduce that 

If  (R- \x\)sy(x, Tfdx + [ (R- \x\)s(\Dmy\2 + \y\r)dxdt 
2JBR JBRX(O,T) 

<c([   (R- \x\)sy0(x)2dx + Rs+N^ + fBx0T(
R- \x\)sH'dxdt 

Finally, by replacing R by i?i and by taking into account that Ri - \x\ > Ri - R and 
R\ — \x\ < Ri if |z| < R we deduce the result with 

Proof of Theorem 4.1. It is a trivial consequence of Theorem 4.2 since, if R\ satisfies 
BRl C ti\uj, then 

II y(u;T) \\lHa)< K(l+ || y0 \\h{n)) Vn e W{Q). 

Therefore, taking yd with || yd ||L2(n) large enough, we obtain (4.1) for s > 0 small 
enough. ■ 
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1. Introduction 

Consider the reaction—diffusion distributed parameter system 

(1.1) ^^ = Ay(t,x) + <P(y(t,x),Vy(t,x)) + u(t,x)    (t>0,xeU) 

in a domain Q C Em with boundary F, a boundary condition ß acting on T. Control 
problems for (1.1) may include constraints on the state y(t, x) and the gradient, either 
pointwise 

(1.2) y(t, x)eMsC R,    Vy(t, i)eM9Cl
ra    (0 < t < i) 

or of integral type. Target conditions can be also pointwise, 

(1.3) y{i, x)GYsC K,    Vy(t, x)€YgQ Rm 

or of integral type, the control interval [0, i] fixed or variable. Control constraints 
may include 

(1.4) u{t,x)eU CR   (0 < * < t) 

and (when U is unbounded) summability conditions in the cylinder (0, t) x Q. 
Interest in optimal control problems with unbounded controls is more than aca- 

demic. When the control set is unbounded, Pontryagin's maximum principle not only 
gives optimal controls as solutions of independent maximization problems for each 
time t but includes the statement that the maximum is finite - sometimes a very 
potent pronouncement. (For ingenious ways of putting this to use in finite dimen- 
sional systems see [8]). As an infinite dimensional possibility of obvious interest we 
mention that of setting up solutions of the Navier-Stokes equations as solutions of 

Preceding Page Blank 
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minimization problems involving purely differential equations (i.e. relegating nonlo- 
cal operators to the cost functional). This can be done in several ways, and in all 
these problems the controls are naturally unbounded. 

Except for particular cases (such as the linear-quadratic problem) interest in Pon- 
tryagin's principle for unbounded control sets seems of recent date. Raymond and 
Zidani treat in [9] and [10] boundary control problems for parabolic equations. Un- 
bounded control sets were considered in [6] for distributed parameter systems with 
smooth nonlinearities in reflexive spaces. These conditions fit systems described by 
nonlinear wave equations but would force unreasonable assumptions on a system 
like (1.1) (for instance, they would not cover such nonlinearities as <j>{y) = — y3 or 
0(l/> Vy) = (y • V)y. We indicate in this paper how to handle abstract parabolic sys- 
tems, with applications to reaction-diffusion equations and the Navier-Stokes equa- 
tions. 

2. Abstract differential equations 

We study (1.1) via the abstract model 

(2.1) y\t) = Ay(t) + f(t, y{t)) + Bu(t),        y(0) = C, 

The operator A in (1.1) generates a bounded analytic semigroup S(t) in a reflexive 
separable Banach space E (for a nonreflexive setup see §5) and 0 G p(A). The control 
space for (2.1) is F = X* (X a separable Banach space) and B : X* —> E is a 
bounded operator with B* : E* —> X. 

The assumptions on A allow construction of the fractional powers (—A)a; {-A)a 

is bounded for a < 0. For any a, (-A)aS(t) is a bounded operator, continuous in 
(E, E) for t > 0 ((E, F) = {linear bounded operators from a Banach space E into 
the Banach space F equipped with the operator norm}) and 

(2.2) \\{-A)aS{t)\\ < Cat
ae~ct    (t > 0,  0 < a < 1). 

If a > 0 we set Ea = D((-A)a) equipped with the norm ||y||Ba = ||(-,4)ay||. 
Invertibility of {—A)a implies that Ea is a Banach space. For a < 0, Ea is the 
completion of E with respect to the norm || • ||Ba. Since E is reflexive, A* is the 
infinitesimal generator of the strongly continuous semigroup S*(t) = S(t)* and we 
define the spaces (E*)a using the fractional powers (-A*)a = ((-A)a)* in the same 
way the Ea are defined from the fractional powers (—A)a. We have 

(2.3) (-A)-^Ea = Ea+1,    {-A*)-^E*)Q = (£*)a+7 

for 7 > 0 and -co < a < oo [5]. 
We say that the function / : [0, T] x Ea -» E-p {a,p > 0, a + p < 1) satisfies 

Hypothesis DatP if the Frechet derivative dyf(t,y) G (Ea, E_p) exists and 

(i) f(t, y) is continuous in y G Ea for t fixed and strongly measurable in t for y 
fixed, 

(ii) dyf(t, y)( is continuous in y G Ea for t and C G Ea fixed and strongly measur- 
able in t for y, £ fixed, 
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(iii) For every c > 0 there exist constants K(c), L(c) such that 

(2.4) 
\\f(t,y)\\E.P < K(c), \\dyf(t,y)\\{EatE_p) < L(c) (0 < t < T, \\y\\Ea < c). 

Controls u(-) in (2.1) are elements of I^W{Q,T;X*) with p > 1/(1 - a), where 
LP,(0,T;X*) is the space of all X-weakly measurable X*-valued functions u(-), 
equipped with the usual IP norm; this space is the dual of Lq(0, T; X) (1/p+l/q = 1) 
and does not in general coincide with 1/(0,T;X*) (except when X* is separable). 
The control set U is an arbitrary subset of X*, and the admissible control space 
Cad(0,T; U) consists of all u{-) G L£,(0,T;X*) such that u{t) G U a.e. 

Solutions of (2.1) are y(t) = (-A)~an(t), where rj(t) solves the integral equation 

r,(t) = (-A)aS(t)( + j\-A)a+"S{t - T)(-A)-"f(T, (-A)-a
V(T))dr 

(2.5) t 
Jo 

+ I {-AYSit - T)Bu{j)dT. 
Jo 

The assumptions guarantee local existence (see [5] for details). Note that if z G E* 
we have (z, Bg(t)) = (B*z,g(t)), so that Bu(-) is E*-weakly measurable; since E is 
separable, Bu(-) is strongly measurable. 

We consider optimal control problems for (2.1) in a fixed or variable interval 0 < 
t <t. State and target conditions are given by 

(2.6) y(t) eM   (0 < t < i),        y(i, u) G Y, 

with the state constraint set M C Ea and the target set Y C Ea closed in Ea. The 
cosi functional is 

(2.7) jfo(t,«) = J Mr,2/(r),u(r))dr 

where /0 : [0,T] x £„ x [/ -+ 1 satisfies Hypothesis D°; this means the Frechet 
derivative dyf0(t,y,u) G (£«)* exists and 

(i0) For every i, u fixed f0(t,y,u) and dyf0(t,y,u) are continuous in y G J5a, 
(M0) For every u(-) G Cod(0,T;[7) and y E Ea fixed i -> f0(t,y,u(t)) and t -> 

dyfo(t,y,u(t)) are strongly measurable in their home spaces, 
(m0) For every u(-) G ^(OjT; {/) there exist constants K0(c), L0(c) such that 

\fo(t,y,u(t))\<K0(c)\\u(t)\\",    \\dvf0(t,y,u(t))\\E.a<Lo(c)\\u(tW 
{     } (0<t<T,||y|k<c). 

3. The minimum principle 

For definiteness, we limit ourselves to the model (2.1) under Hypothesis D°. The 
admissible control space CO(j(0, T; U) is equipped with the distance 

(3.1) d(u(-),v(-)) = \{tG[0,T];u(t)^v(t)}\, 

(| • | = Lebesgue measure). In general, Cad(0,T;C7) is not complete under d if the 
control set U is unbounded; for instance, consider U a cone ^ {0} in X*, u G U, 
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un(t) = £_1X»(*)u, where x„(-) is the characteristic function of [1/n, T]. This is the 
key difficulty precluding direct application of the methods in [5]. 

The dual space (Ea)* is given by (Ea)* = {E*)-a with pairing 

(3.2) {z,y){E>)-a*Ea = (MTa*> {-A)ay)E*xE. 

The proof follows from (2.3); see [5, Lemma 4.4] for details of a more general result 
(actually needed in §5). 

Given any Banach space E, the space £(0, T; E*) consists of all countable additive 
bounded E* -valued measures ß(ds) defined in the field generated by the closed 
sets of [0,T]; this space is the dual of C(0,T;E), the duality given by (ß,y)c = 
tf(ß(ds),y(s)). Since (Ea)* = (£*)_a we have £(0,T; (£*)_„) = £(0,T; (£„)*) = 
C(0,T;Ea)*. See [1] for further details on vector-valued measures. 

Let F be a Banach space. We call a sequence {Qn}, Qn G F precompact if every 
sequence {<?„}, "#« G Qn has a convergent subsequence. A closed set Z C F is T-full 
atx € Z if, for every sequence {xn} C Z such that xn —> x there exists p > 0 and a 
precompact sequence {Qn}, Qn Q F such that the sets Tz(x

n) n 5(0, />) + Q„ contain 
a common ball B(0,e) for n0 large enough (Tz(x) is the Clarke tangent cone to Z 
at x). If the condition above is satisfied with Qn = {0}, Z is strongly T-full at ä. 
Finally, Z is T-full (resp. strongly T-full) if it is T-full (resp. strongly T- full) at 
every f e2. Examples of strongly T-full sets are closed convex sets with nonempty 
interior; for other examples see [6]. 

Given a sequence {Zn} of subsets of F, lim infn-,«, Zn is the set of all z = lim^oo zn 

with zne Zn. If Z C F, Z- C F* is the polar cone of all 2* 6 F* with (2*, 2) < 0 
(z e Z). Finally, we define 

M(t) = {?/(■) G C(0,t; Ea); y(t) G M (0 < t < i)}. 

and assume that M(i) is strongly T-full in C(0, t; E„) and that Y is strongly T-full 
in Ea. 

Theorem 3.1 below for (2.1) gives necessary conditions for optimality of a control 
ü(-). We assume that the set of Lebesgue points of all functions fo{-,y{-,u),v) (v € U) 
has full measure in [0, T]. 

Theorem 3.1. Let ü(-) G Cad(0, t; U) be an optimal control in 0_< t < t. Then 
there exists a double sequence \(y^(-),y^)} C M(t) xY C C(0,i;.EQ) x Fa 5MC/I 

fAflt (y"(-)>ym) -» (j/(-,ö),y(<,ü)) as n -> 00 for m = 1,2,... and a multiplier 
(z0,ß,z) elx E(0,f; (£«)*) x (Ea)*, fo,/*,*) 7^ 0, satisfying 

(3.3)z0>0, pe(h^mfliminfTM(t-)Ä(-)))   , *G (liminf liminf Ty(^))   , 

and such that 

(3.4)    0o{/o(5,2/(s,ö),U)-/o(5,j/(S,ö),ö(S))}+(ß^(S),i;-ö(5)) >0(veU) 

a.e. in 0 < t < i, where z[s) is the solution of 

dz(s) =-{A* + dyf(s, y{s, ü))*}z{s)ds 

^ ' ' - z0dyfo(s, y{s, ü),ü(s))ds - ß(ds),        z{t) = z. 
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By definition, z(s) = (-A*)~pv(s), where 

v(S)=Rafi(i,sy((-A)-ayz 

(3'6) + [ Rafi(v, s)*((-A)-ayv(d<T) = vh(s) + Viis), 

and the operator Ra,o{t, s) is defined by the integral equation 

R*fl(t,8)C = (-A)aS(t-s)C 
(3.7) 

J (-A)aS(t - T)dyf(r,y(T,ü))(-A)-aRafi(r,s)CdT. 

(the operator (—A)~aRafi(t, s) is the propagator or solution operator of the variational 
equation f'(i) = {A + dyf(t,y(t,ü))}£(t)). Finally, Vi(t) in (3.6) is understood as 
follows: for each s, Vi(s) is the only element of E* satisfying 

(3.8) (y, Vi(3)) = j\RaM s)y, ((-A)-Q)V(dcr)>    (y G E). 

Using the integral equation (3.7) we obtain 

(3.9) \Ra,0(t,s)\\{E,E)<C(t-3)-a      {0<S<t<t) 

so that 

(3.10) \\vi(s)\\B<CLüa(s) = cj\i-a)-a\\fi\\(da)    (0<s<t<i). 

Integrating in 0 < s < i and using Tonelli's theorem we deduce that wa(-) G L^O, i). 
It follows from its definition that v(-) is E-weakly measurable, thus is strongly 
measurable by separability. 

Here is the strategy for the proof. Let 

(3.11) Cad(0,T;U,u)m = {«(■) G Cad(0,T;U); \\u{a) - ü(a)\\ < m} 

for m = 1,2, This subspace is complete in the distance (3.1); moreover it is 
patch complete in the sense of [4], [5]: if u{-),v{-) G Cad(0,T;U,u)m and e C [0,T] 
is measurable, the control equal to u(t) in e and to v(t) outside of e belongs to 
Cad(0,T;t/,a)m. Finally, it follows from (2.4) and (2.8) that 

(3.12) \\f(t,y)\\ + \\Bu(t)\\<K(c) + C(\\u(t)\\+m),    \\dyf(t,y)\\ < L(c) 

(3.13) |/0(t,y,u(t))\<K0(c)\\ü(t) + m\\>, \dyf0(t,y,u(t))\<L0(c)\\ü(t) + m\\" 

all bounds valid for 0 < t < T, \\y\\Ea < c independently of u(-) G Cad(0,T; U,u)m. 
Taking into account that if ü(-) is optimal in Cad(0, t; U) it is optimal in any sub- 
space that hosts it, in particular in Cad(0, i; U, u)m, we can apply [5, Theorem 6.2] 
and deduce that for each m there exists a sequence {(y„(-)>3/m)} Q M(i) x Y 
with (y„(-),ym) -* (v{-,ü),y(t^)) as n -+ oo and a multiplier (z0m,ßm,zm) G 
K x E(0,t; (Ea)*) x (Ea)*, {z0m,nm, zm) ^ 0 with 

(3.14) ZOm>0,    fim G (liminf TM(4-)Ä(-)))   .    ^ G (l™1^ ?>(£ 
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and such that 

zom f {/o(o-,y(o-,ü),u(cr))-/o(a,y(o-,iZ),ü(s))}dcr 

(3.15) Jo  L 

+ I (B*zm{a),v{a) - ü{a))da > 0 

for every v(-) £ Cad(0, i; U; u)m, f where zm(s) is the solution of 

dzm{s) = -{A* + dyf(s,y(s,ü))*}zm{s)ds 

^' -z0dyfo(s,y(s,ü),ü(s))ds-ßm(ds),    z(t) = zm. 

It is then clear that, in order to prove Theorem 3.1 it is enough to show: (a) if 
necessary passing to a subsequence 

(3.17) {Zom, Mm, Zm) -> (Zo, ß, z) ^ 0, 

(K x C(0,t;£;a) x £a)-weakly in E x E(0,t; (£«)*) x (£«)*, and (6) If z(s) (resp. 
zm(s)) is the solution of (3.5) (resp. (3.16)) then 

(3.18) zm(-) -► S(-) 

L°°(0,i;£;)-weakly in I}{0,i;E*). In fact, if both (3.17) and (3.18) are satisfied, we 
take limits in (3.15) and obtain 

zo f {fo((r,y(<7,ü),v(a)) - fo(cr,y(<T,ü),ü(s))}d(r 
(3.19) Jo -t 

+ f (B*z(a), v(a) - ü(a))da > 0 

for all v(-) e Cad(0,i; U) with v(a) - ü{a) bounded, and here is how we obtain the 
pointwise version (3.4) of the maximum principle. Let m = 1,2,..., and define 
dm = {a e [0,i];m < \\ü(a)\\ < m + 1}, Xm the characteristic function of dm, 
üm((r) = Xm{o)ü{o), em the set of all left Lebesgue points of both functions Xm{o) 
and üm(a) in [0,i]; em has full measure in [0,i], so that em n dm has full measure in 
dm. If s G em n dm then there exists a set em(h) C[s-h,s]n dm such that 

(3.20) hem(h)\^l,        \\       \\ü(a)-ü{s)\\da^0   &sh^0+. 
1% ft Jem(h) 

The set U (em fl rfm) is total in [0, t], thus so is its intersection e with the set of left 
Lebesgue points of the following functions: (i) z(-), (ii) fo(-,y(-,ü),ü(-)), (Hi) all 
functions /0(-, y(-, u),v). Take see and v € U, find m so that s €emndm and stick 
in (3.19) the function v{a) = vxm{cr) + (l-Xm(v))ü(a). Then v{a)-ü{cr) = vxm{(r)- 
Xm(cr)ü(a) is bounded. We take limits using (3.20) and the diverse assumptions on 
Lebesgue points, and obtain (3.4). 

tStrictly speaking, Theorem 6.2 is proved in [5] under the assumption that the bounds in (3.12) 
and (3.13) are uniform, that is, that the functions on the left are bounded by constants independent 
of the controls. The proof extends almost without changes to this more general situation due to 
the fact that (3.12) and (3.13) are independent of the particular control u(-) € Cad{Q,T;U,u)m. 
Boundedness of v(a) - ü{a) makes it possible the interchange in the order of integration at the end 
of Theorem 6.2. 
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Back to (3.17) and (3.18). The required convergence in (3.17) can be attained 
invoking Alaoglu's Theorem. To show that the limit is nonzero note that, since 
{zom, Pm, zm) T^Owe may assume that 

(3-21) \z0m\    + HMm|lE(0,t;(.Ea)*) + ll^m||(£;a)* = 1- 

If zom ->ZOT^O there is nothing to prove. If z0 = 0 we may erase zom from the left 
side of (3.21) replacing " = " by " -> ". We obtain from (3.14) that 

(3.22) (fim, -ym(-))a,c + (2m, -ym)a > 0 

for (ym(-),ym) € Am = Mm x ym, where 

(3.23) Mm = liminfTM(Q(C(-)) Q C(0,t;Ea),    ym = liminfTY(ym) C Ea, 

where (•, • )Q indicates the duality of Ea and (E*)-a and (•, • )CiQ! the duality of 
C(0,F; Ea) and E(0,f; (E*)-a). The assumptions on M(i) and V and [6, Lemma 3.6] 
guarantee that the M.m x ym contain a common ball in Ea for m large enough, so 
the fact that (p, z) ^ 0 follows from the result below ([2, Lemma 2.5]). 

Lemma 3.2. Let F be a Banach space, {Am} a sequence of subsets of F, {zm} a 
sequence in F* such that 

0 < c < \\zm\\F. < C < oo,        {zm,y) > -em -» 0    (y G Am). 

assume i/iere exists a precompact sequence {Qm} in F such that the sets conv(Am) + 
Qm contain a common ball, (conv = closed convex hull). Then every F—weakly 
convergent subsequence of {zm} has a nonzero limit. 

It only remains to show (3.18). Writing vm(s) = vmh(s) + vmi(s) as in (3.6), the 
statement is obvious for the homogeneous parts; in fact, 

vmh{s) -> vh(s)    0<s<i, 

E— weakly in E*, so that (3.18) follows from the dominated convergence theorem. 
To show (3.18) for vmi(s) we use (3.8). Let vm{da) = {(-Ä)-01)*ßm{da), v{do~) = 
{(-A)-a)*n{da). Then vm -* v C(0, i; E)-weakly in_S(0, t; E*). Given n = 1,2,... 
define an operator Ra,P,n(t, s) in the square [0, i] x [0, i] by Ra,P,n(t, s) = Ra,p{t>s) m 

t—s > 1/n, Ra,P,n(t, s) = 0 in t < s, and extend Ra,P,n(t, s) linearly to 0 < t—s < 1/n, 
so that it shares the bound (3.9). Define v"(s) with v{ds) in the same way as öj(s) 
but using Ra,P,n(t,s) instead of Ra>p(t,s); likewise, define vmi{s) using um(ds) and 
Ra,P,n{t,s). We have 

/min(i,s+l/n) 
(a - s)-a\\v\\(da) . 

By Tonelli's theorem, 

(3.25) fpn{s)ds<f \\v\\{d<j)r     (a-s)-ads = -^—(-)    "f \\v\\{du) , 
Jo Jo Ja-i/n l—a\nj      Jo 

so that ||/ore(-)||x,i(o,t) —> 0 as n —> oo. Since {vm(ds)} is bounded in T,(0,t;E*) we 
obtain in the same way that 

(3.26) \\vmi(s) - <i(s)|U. < Cpmn(s) 
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for each m, with ||/w(-)IUw) -+ 0 as n -> oo, uniformly with respect to m. Pick 
/(•) G L°°{0,i;E) and write 

(3.27)   {vi{s)-vmi(s),f(s)) 

We have that |(ü;(s) - öf(s),/(s))| < \\f\\L°°(o,i;E) P*(s) with a similar estimate for 
Kömi(s) - vmi(s),f(s))\, thus the first and third terms on the right of (3.27) are 
disposed of. For the middle term we note that 

f (v?{s) - v^(s), f{s))ds = fl[ Ra,o,n(°, s)f(s)ds, {v - um)(da)\ , 

hence it is enough to show that the function in the left side of the angled brackets 
inside the integral on the right is continuous. This is obvious and left to the reader. 

The first relation (3.3) is plain; the third relation follows taking limits in (zm, ym) < 
0 (ym G TY{ym))j and the second results in the same way. 

4. The point target case 

There is a version of the maximum principle for (2.1) [5, Theorem 9.1] that covers 
point targets. It requires that / : [0, T] x Ea -> Es (a, 6 > 0) and that {-A)sf(t, y) 
satisfy Hypothesis Dafi. The proof requires again M C Ea closed and M(i) T-full 
in C(0,i;Ea), but we' only need Y to be a closed subset of Ex = D(A), thus, in 
particular we may handle the point target condition y(t,u) = y G D{A). The control 
space in the present application is C(0,i;U,ujm, and the multiplier {z0m,ßm,zm) 
belongs to Rx E(0, t; (Ea)*) x (E*)1^, where (E*)1^ is the subspace of (£*)_i = (E:)* 
determined by the condition 

(4.1) f \\B*S(t)*z\\xdt < oo , 

and we have 

(4.2) zOm>0,    Mm G (limmf TM(*)(ift(-)))   ,    zm G (limmf TY{yn
m))   , 

where, for each m, {(!&(■).»£)} £ M(i) x Y with (y^(-),y^) -► {y{-,ü),y(t,ü)) as 
n ^ oo. See [6] on extension of the adjoint semigroup S(t)* to the spaces (S*)_i 
and other details.* The costate is defined as in (3.6) but the homogeneous term 
is vmh{s) = ({-Af'aRafi{t,s]u))*{-A)-1)*zm. The minimum principle in integral 
form is again (3.15), 

(4.3) z0m j {/0(a, y{<7, u),v(a)) - f0(a, y(a, ü),ü{s))}da 

+ Jl (B*zm{a), v(a) - ü{a))da > 0 

'Again, Theorem 9.1 in [5] is proved assuming that the bounds in (3.12) and (3.13) are uniform 
and the controls are bounded. The proof works under (3.12) and (3.13) as long as v{a) - ü(a) is 
bounded. 
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for every v(-) G Cad(0, i; U; u)m and 

(4.4) f S{i - a)Bv(a)da G D{A) . 
Jo 

(note that, since y(i,ü) G Y C D(Ä), ö(-) itself satisfies (4.3)). The conditions above 
do not guarantee that the multiplier is nonzero. A sufficient condition comes below. 
Given v(-), G Cad{0, i; U), denote by £(£, ü, v) the solution £(£) of 

(4.5) ?(t) = {A + dyf(t, y(t, ü))R(i) + B(v(t) - ü(t)),       £(0) = 0 

and assume the reachable space R(i, U; u)m = {£(£, ü, v); v G C(0, i; U, u)m} satisfies 

(4.6) Ä(^i«)i2Bi(£), 

2?i(e) a ball of radius e > 0 in Ei. Then 

(4.7) (^0m,Mm,^m) 7^0. 

When controls w(-) are bounded, a sufficient condition for (4.6) is that U contain a 
ball of positive radius around some control v(-) satisfying (4.4). In the general case, 
it is enough to require that the set 

(4.8) | jT S(t- a)B(v{a) - u(a))da; «(•) G Cad(0,t; U,ü)A 

contain a ball Si(e) C l*^. This does not seem like a good condition to verify since 
it contains the unknown optimal control, but it can be checked easily in many cases 
without any information on ü; one example is X* = L°°(Q), U defined by the condi- 
tion u(x) > 0 a.e. (see Section 6). 

We shall take limits in (4.3) in the same way as in (3.15), and we need to show 
(3.17) and (3.18). Note that, this time, (z0m, fim, ^elx E(0, t; (£*)-«) x (£*)_i 
and convergence in (3.17) is (Rx Ea x E^)—weak convergence. 

Inequality (4.3) is equivalent to 

(4.9) z0m£o{t,Ü, v) + (ßm, £(•,ü, v))a,c + (zm,€(i,ü, v))i > 0, 

for all v(-) G Cad(0, i; U, u)m with £(£, ü, v) G E± (the latter condition equivalent to 
(4.4)), where 

&(*,u,v)= j (dyfo{T,y(r,U),U(T)), £(T, U,V))JT 

J   {fo(r,y{r,ü),v(T)) -/o(r,2/(r,ö),ü(r))}dr; 
(4.10) Jo 

■t 

+ 

(see [5] for a proof of the equivalence of (4.3) and (4.9)). Since (z0m, ßm, zm) ^ 0 we 
may assume 

(4.11) 4„ + \\ßm\\l{o,t,(Ea)*) + Ikmllc^)* =1    (m = 1, 2, . . . ). 

Select a subsequence of the sequence {(z0m, Pm, zm)} such that the limit (3.17) exists 
(E x Ea x Ei)—weakly. If z$m —> z0 ^ 0, the limit is nonzero and there is nothing 
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to prove. If z0 = 0, we combine (4.2) with (4.9) keeping v(-) in Cad(0,i;U,ü)1 C 
Cad(0,i; U,v)m. The result is 

(4.12) (ßm, £(•, ü, v) - ym{-))a,c + (zm, £{t, ü, v) - ym)i > -8m -» 0 

for (ym(-),ym) e Mmx ym, Mm and ym given by (3.23), the second liminf (and 
tangent cones) computed in the norm of Ex. The expression on the right of (4.12) 
is justified by the fact that \\v(a) - u(a)\\ < 1, so that £(t,ü,v), hence £0(t,ü,v), 
is bounded independently of v(-) (take a look at (4.5) and (4.10)). Accordingly, to 
apply Lemma 3.2 it is enough to show that the sets Am defined by 

(4.13) (S(;ü,v)-ym(-), £(i,ü,v)-ym) C C(0,t;Ea) x E1 

(where v(-) E Cad(Q,i;U,u)i and we may take ym = 0) contain a common ball in 
C(0, i; Ea) x Ei. The first coordinate is covered by ym(-) alone on the strength of the 
assumptions on M(t) and of the fact that £(•, ü, v) is bounded in C(0, *; Ea); for the 
second, we use (4.6). For reference, we state the final result: 

Theorem 4.1. Let ü(-) G Cad(0, i; U) be an optimal control. Then there exists a 
double sequence {(£" (•),&&)} Q M(t) xFC C(0, t; Ea) x Ex SMC/I that (y^(-), y™) ^ 
(y(-,ü),y(t,ü)) in C(0,t;Ea) x £i as n -» oo anrf a multiplier {z0,ß,z) G M x 
E(0,F;(£;*)-a) x (£*)_i; (20, M,«) ^ 0, satisfying 

(4.14) z0>0, ^e(limjnf liminf TM(t-)(C(-))) , ze (liminf liminf Ty(yi 

and 

(4.15) 2b{/o(«.l/(s,«),«)-/o(s,y(s,«),t2(s))} + <ß*2(s),v-Q(s))>0 (« G [/) 

a. e. in 0 < t < i, where z(s) is the solution of (3.5). 

Remark 4.2. The integral form (3.19) of the maximum principle guarantees that 
z G (-E*)Li; the argument is the same in [5, Theorem 9.1]. 

5. Nonreflexive spaces 

The setup in §4 covers reaction-diffusion equations and the Navier-Stokes equa- 
tions in IP spaces 1 < p < 00 (see §6); however, there is an advantage in treating 
parabolic equations in spaces C(fi) of continuous functions (see §6), thus it is con- 
venient to extend the results in §4 to nonreflexive spaces. This can be done with 
minor changes; we only need to assume that E is separable. The assumptions on the 
semigroup S(t) and its infinitesimal generator A are the same and the spaces Ea are 
defined in the same way. On the other hand, A* may not be a semigroup generator 
(or even densely defined) thus the spaces (E*)a are defined using ((-A)a)* rather 
than {-A*)a. If D(A*) is not dense in E\ it is no longer true that (Ea)* = (E*)-a; 
however, the dual is algebraically and metrically isomorphic under (3.2) to a larger 
space (Ea)* with (£*)_„ =-+ (Ea)* --> (£*)_(a+E) for all e > 0. Some of the functions 
of the dual E* are taken over by the Phillips dual E@ = closure of D{A*) in E*; the 
adjoint semigroup S(t)*, restricted to E@ is called Se(t) and is strongly continuous; 
the space Ee is maximal with respect to this property. We name Ae the infinitesimal 
generator of Se(t). The same considerations applied to the semigroup S@(t) produce 
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(£®)°, (^0)0 an(j (S(t)e)@. We assume that E is Q-reflexive in the sense that 
(£©j© = E. this implies that (A0)0 = A and (5(i)0)0 = S{t). Hypothesis Da<p is 
formulated in the same way, but in the case p = 0, f(t,y) is allowed to take values 
in (E@)* D E. 

The statement and proof of the minimum principle are the same; the multiplier 
(z0, ß, z) is in R x £(0, i; (Ea)*) x (Ea)* (R x S(0, i; (Ea)*) x (Ex)* for point targets). 
We still have ((—A)~a)*(Ea)* = E*, so that the costate z(s) is defined in the same 
way as in the reflexive case; due to the smoothing properties of the semigroup, z(s) 
takes values in E® rather than E*. 

6. Applications 

Theorems 3.1 and 4.1 for reflexive separable E can be applied to the controlled 
Navier—Stokes equations 

(6.1) y'(t) = Apy(t) + Pp((y ■ V)y + Ipu(t)) . 

The space is E = Xp(Q,)m = closure in U^l)"1 of all divergence-free m-vectors 
y(x) = (yx(x),...,ym(x)); Pp is the projection of U>(ü)m into Xp(Q)m and Ap is 
the Stokes operator Ap = PPAP, Ap the m-vector Laplacian in LP(Vl)m. The control 
space is a (possibly unbounded) subset of Lr(0,T;Lr(Q)m), p < r (for r = oo we 
take L~(0, T; L°°(ü)m)) and Ip is the embedding operator from Lr(Q)m into U(^)m. 
Hypothesis DQ

a is satisfied for a < 1 if p > m and 1/2 + m/2p < a; in Theorem 
3.1 one may take r > p arbitrary, in particular r = oo. On the other hand, the 
assumptions in Theorem 4.1 hold for p large enough if 1/2 < a <1, S < a — 1/2); in 
this case, r = p. The treatment admits state constraints of the form 

(6.2) Sy(t, x)£MsQRk    (0<t<t,xeQ), 

(Sy(x) = Y,Y,r]jk(x)djyk(x) + Y,r)j(x)yj(x) a first order differential operator with 
k—vector coefficients in C(fl)k) and target conditions of the same type. Nonlin- 
earities more general than the one in (6.1) are tractable. See [7] for details. 

The main application in nonreflexive spaces is to uniformly elliptic partial differ- 
ential operators A(ß) coupled with a boundary condition ß in a bounded domain 
Q, £ Rm with boundary T. Here, E = C(Q) = {all continuous functions in Q} 
equipped with the supremum norm; for the Dirichlet boundary condition the space is 
the subspace CQ(Q) of C(O) determined by y(x) = 0 (x G T). Assuming smoothness 
of the coefficients, the domain and the nonlinearity f(t,y)(x) = <f)(t,x,y(x),Vy(x)) 
all results apply with a > 1/2, and state and target constraints of the form (6.2) are 
tractable. See [5] for further details. 
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1. Introduction 

During the last years, controllability for deterministic distributed parameter sys- 
tems has been intensively studied. In particular, it is known that the heat equation 
and the Stokes system with control concentrated in an arbitrary subdomain are ap- 
proximately controllable (see [11]; see also [5]). 

However, the analysis of the controllability for stochastic partial differential equa- 
tions seems to remain an almost open field of research. The unique works we know 
on the subject are [3] and [15]. 

In this paper, we present some approximate and exact-to-zero controllability re- 
sults for a class of linear stochastic partial differential systems. This includes, as a 
particular case, a stochastic heat equation of the form 

( dty-Ay=l0v + B(t)wt   in   Q = D x (0,T)    P - a.s., 
I  y = 0   on    S = 3D x (0, T)    P- a.s., 
1 2/(0) = 2/o   in   D   P - a.s., 

where the control is v. Here, Ö and D are bounded open sets in RN with Ö C D, la 

is the characteristic function of the set Ö and wt = dtwt is a Gaussian random field, 
white noise in time. 

Roughly speaking, we are going to prove that, for general i/o, Vd and B, one can 
obtain final states y(T) arbitrarily close to yd in quadratic mean by choosing v ap- 
propriately (an approximate controllability result). We will also prove that, if B is 
not random and in some sense small, then one can also choose v such that y(T) = 0 
(a null-controllability result). 

Partially supported by D.G.I.C.Y.T. (Spain), Proyecto PB95-1242. 
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We will also study questions of the same kind for Stokes and (more generally) 
quasi-Stokes stochastic systems 

(1.1) 

' dtVj - by, - di (oi(x)yj) + cij(x)yi + djU = l0Vj + Bj(t) wt, 
djVj = 0, 
yj = 0   on   £, 

. %(0) = m    in   D 

(1 < j < N), where the usual summation convention is assumed. 
This work is a continuation of [15]. An extended version, where other more general 

problems will be considered, will appear in the next future. 

2. Approximate controllability results 
Assume a bounded and connected open set Del" with regular boundary dD, 

a nonempty open subset Ö C D, a positive number T and a complete probability 
space {Cl, T, P} are given. 

We will use the following notation: H = L2(D), V = H%(D), |.| and (.,.) are 
resp. the usual norm and scalar product in H. If X is a Banach space and / G 
L^Q, J7; X), we denote by Ef the expectation of /: 

Ef= j f(u)dP(w). 
Jo. 

Also, assume that a separable Hilbert space K and a Wiener process wt on {ft,.F,P} 
with values in K are given. This means that 

oo 

Wt = YJßW   Vi>0, 
fc=l 

where the ß* are mutually independent real Wiener processes satisfying 

2 °° 
(2.1) £(#)   =Xkt,        £Afc<+oo 

and {ek} is an orthonormal basis in K (for the definition of a real Wiener process, see 
for example [1]). Notice that, in particular, wt has Holder-continuous sample paths. 

In the sequel, we put Tt = a(ws, 0 < s < t) (the a-algebra spanned by ws for 
0 < s < t). Obviously, {Tt} is an increasing family of sub cr-algebras of J7 and, 
among other things, one has: 

(2.2) jrt = £rm^sj     Vi>0. 

For any / G L1^,?;!!), we denote by E{f\Ft] the conditional expectation of / 
with respect to Tu i-e. the unique element in Lx{Q.,Tu H) such that 

[ E[f\Tt]dP= [ fdP   MA&T 
JA JA 

(cf. [14] for the main properties of the conditional expectation). 
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Let X be a Banach space. We denote by I2(0,T; X) the space formed by all 
stochastic processes $ G L2(Q x (0,T),dP <S> dt; X) which are ^-adapted a.e. in 
(0,T), i.e. suchthat 

$(£) is .^-measurable for almost all t G (0,T) 

(in the case X = C(K; H), measurability will mean strong measurability).  Then, 
f 2(0, T; X) is a closed subspace of L2{ü x (0, T),dP® dt; X). 

Assume that a stochastic process B is given, with 

(2.3) BeI2(0,T;£(K;H)). 

Then the stochastic integral of B with respect to wt is defined by the formula 

/ B(s) dws = ^2     B{s)ekdßk
s       Vt G [0,T}. 

Jo k=1Jo 

Here, the convergence of the series is understood in the sense of Z/2(n,.f"t;ü). The 
stochastic integrals in the right side are defined by the equalities 

( f B(s)ek dßk
s, h) = f\B(s)ek, h) dßk

s       VheH, 
Jo Jo 

where the latter are usual Ito stochastic integrals with respect to the real-valued 
processes ß\ (see [1]). 

Assume we are given an arbitrary but fixed initial state 

(2.4) yo G H 

and set A = A (the usual Laplace operator). For each v G /2(0,T; H), there exists 
exactly one solution yv to the problem 

| yv G 72(0,T; V) ni2(fi; C°([0,T}; H)), 

(2'5)     { yv(t) = yo + J*{Ayv(s) + l0v(s)}ds + J*B(s)dws   Vie[0,T]. 

In (2.5), the equalities hold P - a.s in V. Let S(t) be the semigroup generated in H 
by A, with domain D(A) = {heV; Ahe H}. Then 

(2 6)        1 Vv{t) = S{t)y° + fo S{t " S)(1°U(S)) ds + Jo 5(i " S)B{S) dWs 

(see [2], [13]). Our first result is the following: 

Theorem 2.1. The linear manifold YT = {yv(T); v G I2(0,T; if)} is dense in the 
space L2(fl, T?\ H). 

Proof. Using (2.6), it suffices to check that, if / G L2(fi,^r;ü") and 

(2.7) E(J*S(T-8)(lov{8))ds,f) = 0   Vv£l2(0,T;H), 
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then necessarily / = 0. Let / be a function in L2(fi,TT\H) satisfying (2.7) and 
assume that <p G J2(0, T; H) is given by 

(—dt<4> — Atp = 0   in    Q, 
ip = 0   on    E, 

i.e. (p(t) = S(T - t)f. It will be sufficient to prove that £[<p(i)|.Ft] = 0 for all 
t G (0,T). Indeed, this and the continuity property (2.2) of the family {Tt} clearly 
imply / = E[(p(T)\Pt] = 0. We know that 

E [ Ms), lo<p(s)) ds = 0       Vve I2(0, T; H). 
Jo 

Consequently, loElip^)^] is a stochastic process in I2(0,T; H) such that 

E fT(v(s), l0E[<p{s)\Fs])ds = fTE(E[(v(s), l0<p{s))\ra]) ds 
Jo Jo 

= fTE{v(s), l0ip(s)) ds = 0       Vve /2(0, T; H) 
Jo 

and one has 

(2.8) l0E[<p(t)\Ft}=Q. 

For each t G (0,T), E[(p{t)\Ft] = S(T - i)£[/|^i] is real analytic in the variable 
x G D. Hence, one must necessarily have E[ip(t)\Ft] = 0 for all t G (0,T) and the 
theorem is proved. 

Remark 2.1. We deduce from theorem 2.1 that, for all ya G L2{Q,,TT; H), e > 0 and 
8 > 0, a control v G J2(0, T; i7) can be found such that 

P{\yv(T)-yd\<e}>l-6. 

The existence of a control t> G I2(0,T; H) such that P{|y„(T) — yd| < e} = 1 is an 
open question. 

The assertion in theorem 2.1 remains true for systems governed by more general 
equations. More precisely, one has: 

Theorem 2.2. Assume that, in (2.5), A G C(V; V) is an operator of the form 

Ay = diiüijdjy) + d^hy) + cy, 

where the coefficients satisfy 

aijeC\D),    h,ceLx{D) 

and the usual ellipticity condition 

aij(x)XjXi > a\X\2    VA G RN, VxeD,    a > 0. 

Then the corresponding linear manifold YT = {yv(T); v G 72(0,T; H)} is dense in 
the space L2

{Q,,!FT',H). 
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Proof. It is analogous to the proof of theorem 2.1. Thus, let us denote again by S(t) 
the semigroup generated by A in H. Let A* and S*(t) stand for the corresponding 
adjoint operators. Assume that / G -L2(fi,J"T;i7) and (2.7) is satisfied. By putting 
ip(t) = S*(T- t)f, one finds again (2.8). 

Unfortunately, now i?[(^(i)|JFt] is not in general real analytic in x for 0 < t < T. 
So, we cannot deduce directly from (2.8) that !?[<£>(£) |.Ft] = 0 for all t (this would 
suffice). However, using the fact that the equation — dt<p — A*<p = 0 has the unique 
continuation property, this can be arranged. This is shown in the following 

Proposition 2.1. Let the assumptions in theorem 2.2 be satisfied. Assume that f G 
L2(Q,F;H) and laE[S*(T - t)f\Ft] = 0 for all t G (0,T). Then 

(2.9) E[S*(T - t)f\Tt] =0    a.e.inD   Vt G (0, T). 

Proof. Our assumptions on A imply unique continuation for all functions S*(T — t)h 
with h G H (cf. [16]). In particular, if h is such that 10S*(T - t)h = 0 for all 
* e [n,T2], then S*(T -t)h = 0 a.e. in D for all te[n, r2]. Let us fix r G (0,T) and 
F G J-T and let us prove that 

(2.10) / E[S*(T - T)f\FT] dP = 0. 
J F 

Since r and F are chosen arbitrarily, this will imply (2.9). We observe that, for each 
iG[0,T], 

/ S*(T - t)f dP = S*(T- t)(E(lFf)). 
JF 

Also, from the properties of conditional expectation, one has 

[ S*(T- t)fdP = f E[S*(T - i)/|.Fj dP   Vi G [T,T\. 
JF JF 

Hence, E(lpf) is a function in H such that 

loS*(T - t)(E(lFf)) = / 10E[S*(T - t)f\Ft] dP = 0   Vi G \T,T). 
JF 

From the unique continuation property, (2.10) is obtained. 

Remark 2.2. We can extend to the stochastic framework the penalization methods 
in [7]. More precisely, assume that y^ is given in the space L2(Q, T^\ H) and set 

Jk(v) =E fT\v\2dt + kE\yv(T) -yd\2   Vv G J2(0,T; H) 
Jo 

for each k > 1. It is not difficult to prove the existence and uniqueness of a process 
Vk minimizing Jk in J2(0,T; H). Let us set yk = yik. Then one has 

(2.11) lim E\yk(T) - yd\2 = 0. 
k—*oo 

Indeed, if e > 0 is given and E\yv(T) - ya\2 < f, the following holds: 

kE\yk{T) - yd\2 < Jk(vk) < Jk(v) < fc| + £ jT \v\2 dt   \/k > 1. 

Prom this, (2.11) follows easily. 
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Remark 2.3. If B is not random and satisfies 

B e C°([0,T]; C(K; H)) 

and yd = 0, then it follows from the results in [10] that i>k is a feedback control. To 
be more precise, one has 

vk(t) = -loQk(t)yk{t), 

where Qk is the unique solution in C°([0,T]; £+(#)) to the Riccati equation 

Qk(t) = kS(T - t)S(T - t) - f S{s - t)Qk{s)l0Qk{s)S{s - t) ds 

(here, Cj(H) denotes the set formed by all self-adjoint nonnegative operators in 
C(H)). Furthermore, in this particular case the optimal cost is given by 

Mvk) = (Qk(0)yo,Vo) + [ trace B*(t)Qk{t)B(t)Wdt, 

with W G C{H) being the covariance operator of wt. 

Remark 2.4. Let us finally mention that the duality methods in [7] also work in this 
context. More specifically, let Z stand for the Hilbert space L2{Q, TT; H) (with norm 
|| • \\z and scalar product (•, -)z)- Assume e > 0, y0 G H and yd G Z are given. It is 
then natural to minimize 

(2.12) -E [[ \v\2dxdt 
^ ' 2      JJOx(0,T) 

over the (nonempty) set 

(2.13) I2(0,T;H)n{v; \\yv(T) - yd\\z < e}. 

In the conditions of theorem 2.2, there exists exactly one minimizer (up to an additive 
function vanishing onöx (0,T)). This is given as follows. Let us introduce the dual 
functional 

( J(f) = \EJI \(p\2 dx dt + e\\f\\z - (Vd, f)z 

\ V/ G Z, 

where yd = yd — S(T)y0. Here, we have used the notation (p{t) = E[ip(t)\Tt\i with 
ip G i"2(0, T; H) being given by 

-dtif - A*ip = 0   in    Q, 
<p = 0   on    E, 

fen = f, 
It can be proved that J : Z H-> E is strictly convex, continuous and^ due to unique 
continuation, coercive. Consequently, there exists one and only one / G Z satisfying 

(2.14) J(f)<J(f)    Vf£Z. 

Let / be the solution to (2.14). Then, if we set v(t) = E[(p(t)\Tt] for all t, it is not 
difficult to check that IQV is the control process minimizing (2.12) in the set (2.13). 
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3. A null-controllability result 

In this section, we present a null-controllability result for (2.5). Again, this is the 
analog of a deterministic result. 

Let us fix a positive function 7 G C°°(0,T) such that j(t) = t near t = 0 and 
j(t) = T -t near t = T. It will be assumed that the hypotheses in theorem 2.2 
hold, that B is not random and satisfies B G Cl{[Q,T}; C(K; H)) and, also, that the 
support of B(t) does not intersect Ö for all t. 

Theorem 3.1. There exists a positive function p = p(x) such that, if 

(3.1) JJt Oni^llW) + ^f\\9tB\\l(K,H)) e
2^ < +00, 

then, for each y0 G H there exists v G I2(0, T; H) satisfying yv(T) = 0. 

Sketch of the Proof. We will adapt the arguments in [8] in the context of (2.5). We 
will previously rewrite the null-controllability problem as an equivalent problem for 
which yQ = 0. 

(i) Let 6 = 6(t) be a C°° function such that 9(t) = 1 near t = 0, 9(t) = 0 near 
t = T and 0 < 8 < 1. Let us introduce the function £, with 

m = S(t)yo   Vi. 

Then, by setting g = -0'(i)f and zv = yv - 0(i)£(i), one sees that yv(T) = 0 if and 
only if the unique solution to 

(dtzv - Azv = l0v + g + Bwt   in   Q   P-a.s., 
zv = 0   on   S    P-a.s., 
zv(0) =0   in   £>    P - a.s. 

satisfies zv(T) = 0. 
(ii) Following the ideas of [8], let us introduce (and solve) an auxiliary variational 

problem.   
Let O' be a nonempty open set satisfying O' CC O. We will put D' = D\ O', 

Q' = D' x (0,T) and S' = d£>' x (0, T). As usual, ö'v will stand for the open n- 
neighborhood of O'. The usual co-normal derivative operator associated to A and 
A* will be denoted by 8A- We will need the following 

Proposition 3.1. There exist a positive function p G C2{D) and a positive constant 
C* such that 

UQi 7 (\dtq\2 + \D2q\2) e-2? + jj^ r1^^2" + JJQ/ T%\2e 

<C.(JJ ^dtq + A'qfe- 

-2£ 7 '\\q\~e    1 -\- 11   7 "I9l"e 
JQ>  '  v   "" '        "   ' JJQ' 

\utq -I- A q\ e    ~ 

/or aM functions q G C2(ff) such that q = 0 on £' and 9^g = 0 on 9C x (0, T). 

This Carleman inequality is proved in [9] (see also [6] and [17] for other more 
general estimates of the same kind). In the sequel, it will be assumed that B satisfies 
(3.1) with p furnished by proposition 3.1. We will prove that, for some v, one has 
zv{T) = 0. 
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Let us introduce the linear space 

$o = {96 C2{Q>); q = 0 on E', dnq = 0 on dö' x (0,T) }. 

Prom proposition 3.1, we know that 

[p, q] = IJ <frp + A*p)(dtq + A*q) e~2$ 

is a scalar product in *0- Let \I> be the completion of *0 for the scalar product [•,•]. 
Then (3.3) is satisfied for all g6*. Let us put P = I?(Sl,T\ *), a Hubert space for 
the scalar product 

E\p, q]=EJJ\ (dtp + A*p) (dtq + A*q) e~25. 

Let us also put 

(l,q) = -E jj gq + E JJ [qdtB + dtqB)wt    Vq G P. 

Then, using (2.1), (3.1) and proposition 3.1, it can be shown that I is a bounded 
linear form on P. Arguing as in [8], we introduce the following problem: 

(3.4) E\p,q] = (l,q)    V5eF,    p G P 

-2S-, Obviously, (3.4) possesses exactly one solution p. Let us put z = e~ i{dtp + A*p). 
Among other things, one has z G L2(Q, T; L2(Q')). 

(iii) It can be seen that z has sample paths in C°([0,T\;H~l(D')) and satisfies 

(z(t), go) = f {(z(s), A*q0) + (g(s), q0)} ds + (f B{s) dws, q0) 
Jo J o 

P-a.s. for all t G (0, T) whenever q0 is (for instance) a function in C^(D'). The 
stochastic integral arises as a consequence of Ito's formula (here, the fact that B is 
not random is needed). It is thus clear that z G /2(0,T; L2(D')). Let 8 be such that 
0 < 6 < I dist (£>', dö) and let % G C°°(D) be a cut-off function satisfying 

0<X<1,        X = 0     in<^,        x=l     mD\0'26. 

Then, z = xz can be extended by zero to the whole domain Q. Its extension, 
also denoted by z, satisfies z G I2(0,T;H) and also the following equalities for all 
q0eD(A*) and all i 6(0, T): 

(z(t),q0) = [ {(z(s),A*q0) + {g(s),q0)} ds + ( f B(s)dws,q0) 
JO JO 

+ [ {(biz(s), diq0) + (cz(s) + (x- l)g(s),q0)} ds. 
Jo 

Here, 6» = 2a# djX and c = a^ dfjX - h d,x- Prom known results, we are now able to 
ensure that z 6 J2(0,T; V) (for example, see [2], [13]). 

(iv) Let us introduce a second cut-off function x 6 C°°(D), with 

0<X<1,        X = 0     mO'2S,        x=l     in D\0'3S. 
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By putting z = xz, we see that, for some v G 72(0, T; H), 

(«(*), 5b) = / {(z{s),A*q0) + {g(s),q0)}ds + ([ B(s)dws,q0) 
Jo Jo 

+ [\lov{s),q0)ds   Vq0eD(A*),    V£G(0,T)    P - a.s. 
Jo 

Prom (3.4), (3.5) and the fact that z G 72(0,T; V), it is easy to deduce that z = zv 

(the unique solution to (3.2)) and also that z(T) = 0. 

4. The case of the Stokes and quasi-Stokes systems 

The assertion in theorem 2.2 also holds in the case of a quasi-Stokes stochastic 
system of the form (1.1) with bounded coefficients a» and cy-. To be more precise, let 
us introduce the space 

V = {<peC^(D)N; V-^ = 0     in£>} 

and let us denote by V (resp. H) the closure of V in HQ(D)
N
 (resp. L2(D)N). In this 

section, A will stand for the operator in C(V; V) given by 

(Ay, z) = - J {Vy • Vz + a^yjdiZj + cij(x)yizj} dx   Vy, z G V, 

where it is assumed that 

Oi, Cy G L°°(I>). 

Regarded as an unbounded operator on H with domain 

D(A) = {yeV;AyeH}, 

A is the generator of a semigroup on H, again denoted by S(t). Assume B and yo 
are given and satisfy (2.3) and (2.4). For each v G 72(0, T; L2(D)N), there exists one 
and only one solution yv to the problem 

yveI2(0,T;V)nL*(n-C°([0,T};H)), 

yv(t)=yo+ f{Ayv{s) + l0v{s)}ds+ [ B{s)dws   ViG [0,T]. 
Jo Jo 

In fact, if PH stands for the orthogonal projector from L2(D)N onto H (the Leray 
operator), then yv is given by the following identities: 

f yv(t) = S(t)y0 + J* S{t - s) [PH(l0v(s))] ds + jT S(t - s)B(s) dws 

\vtG[0,T]. 

Using this and the unique continuation property established in [4], we can argue as 
in the proofs of theorem 2.2 and proposition 2.1. The conclusion is: 

Theorem 4.1. With the notation used in this section, the linear manifold YT = 
{yv(T); v G I2(0,T; L2(D)N) } is dense in the space L2(tt,FT; H). 
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Remark 4.1. For systems governed by stochastic quasi-Stokes problems of this kind, 
we can adapt the arguments in Remarks 2.2, 2.3 and 2.4. Thus, similar penalization, 
feedback and duality results can be obtained. 

Remark 4.2. If (1.1) is the stochastic Stokes problem (i.e. a, = ctj = 0), it is possible 
to prove that, for fixed 1 < j < N, the set 

{yv(T);veI2(0,T;L2(D)N),vj = 0} 

is also dense in L2(fi,FT\H). The proof is as in the similar deterministic case 
(cf. [11]). 

Remark 4.3. For the stochastic 3D Stokes problem in a cylindrical domain D = 
Gx(0,L), one also has approximate controllability in a "generic" sense with respect 
to G with controls in the set 

Uad = {v G /2(0,T; L\Df) ;Vl=v2=0}. 

More precisely, using the results in [12] and arguing as above, it can be seen that, 
for any given bounded domain G C K2 of class Ck (with k > 3), there exists another 
domain G arbitrarily close to G in the Ck topology such that the corresponding set 
{yv{T); v G Uad} is dense in L2{Ü,TT\ H). 

To our knowledge, whether or not null-controllability (i.e. theorem 3.1) holds for 
systems governed by (1.1) is an open question. 
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ABSTRACT. This article presents a reduced basis method for constructing a reduced order 
system for control problems governed by nonlinear partial differential equations. The major 
advantage of the reduced basis method over others based on finite: element, finite difference 
or spectral method is that it may capture the essential property of solutions with very few 
basis elements. The feasibility of this method is demonstrated for boundary control prob- 
lems modeled by the incompressible Navier-Stokes and related equations with the boundary 
temperature control and boundary electromagnetic control m channel flows. 
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1. Introduction 

Real time simulations of control problems that involve partial differential equations 
as state equations are often formidable problems to solve. Our work was motivated by 
the recent interest in optimal flow control of viscous flows which are control problems 
involving Navier-Stokes equations as state equations; see [11] for a review. These 
problems are by far the most challenging control problems in computational engi- 
neering and science. The major difficulty is mainly due to the nonlinearity in the 
state equations and these state equations when discretized can number in millions. 
Thus the conventional approaches cannot be adequate for solving such large scale 
control problems 

In this article we discuss a reduction type method which may provide an avenue 
to overcome this difficulty. In this method hereafter called reduced basis method 
one uses basis functions which are closely related to and generated from the problem 
that is being solved. This is in contrast to the traditional numerical methods such 
as finite difference method and finite elements method which uses grid functions and 
piecewise polynomials, respectively, as basis functions. 

There are several approaches available for the selection of basis functions in reduced 
basis method. One such approach is Taylor approach in which one uses solutions at a 
reference point in the parameter space along with their derivatives as basis functions. 

This work was supported by the Air Force Office of Scientific Research under grants AFOSR 
F49620-95-1-0437 and AFOSR F49620-95-1-0447. This work was partially supported by the Office 
of Naval Research Grant N00014-96-1-0265. 

Preceding Page Blank 
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Another approach which we call Lagrange approach uses solutions of the problem at 
various parameter values as basis functions. Finally the Hermite approach is a hybrid 
of Lagrange and Taylor approaches which uses solutions and their first derivatives 
of the problem at various parameter values as basis functions. The applications 
of reduced basis method to structural mechanics problems can be found in [1] and 

[6]-[7]. 
Our goal here is to demonstrate the applicability and feasibility of reduced ba- 

sis method for control problems governed by Navier-Stokes type partial differential 
equations. We will consider vorticity minimization problems in backward-facing step 
type channel geometry as a prototype control problem. Two fluid flow situations 
are considered: An electrically conducting fluid under applied magnetic field and a 
thermally convective fluid. In the first situation the control is effected by boundary 
electric potential and in the latter the control is boundary temperature. 

Electromagnetic Control. When the fluid is electrically conducting, such as sea 
water, one can obtain an interesting control mechanism by appropriately placing 
electrodes and magnets along the boundary of the flow domain such that there is 
a coupling between magnetic field B and the current j, see Figure 1.1 for one such 
setup. This coupling produces a forcing j x B which appears in the Navier-Stokes 
equations and is known as Lorenz force, see [10]. This forcing can be exploited to 
control fluid flows. In §5, we will descirbe this control mechanism and in §6 we 
will use this for a vorticity minimization problem in fluid flows to demonstrate the 
feasibility of reduced basis method. 

FIGURE 1.1. A simple diagram of MHD setting 
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Boundary Temperature Control. By imposing a temperature gradient in the flow 
by adjusting boundary temperature, one can either enhance or counteract the flow 
effects. In §5-6, we will use this control mechanism for a vorticity minimization 
problem in fluid flows to demonstrate the feasibility of reduced basis method. 

A Vorticity Minimization Problem. As a prototype problem for vorticity minimiza- 
tion in fluid flows, let us consider the flow through backward-facing step channel at 
Reynolds number 200. For this Reynolds number range flows can be assumed to be 
steady and two dimensional. Thus we consider a steady plane flow in a backward- 
facing step channel as shown in Figure 6.1. The corresponding flow at this Reynolds 
number is shown in Figure 6.3 which has a corner circulation near the corner. Our 
objective is to suppress this recirculation by using the control mechanisms discussed 
previously. We formulate this as an optimal control problem with a cost functional 
representing vorticity in the flow which is thus minimized subject to the governing 
equations of the flow under consideration. 

We will consider the two control mechanisms described previously in two different 
flow setting. That is flow is either electrically conducting or thermally convective and 
we will consider electromagnetic control in the former and boundary temperature 
control in the latter. 

2. Reduced Basis Spaces and Reduced-Order Equation 

In order to illustrate the reduced basis method, we assume for ease in exposition 
that we are dealing with nonlinear dynamics about the equilibrium points. Consider 
the the parameterized stationary problem 

(2.1) £(v,p)=0   for/zeA, yeX, 

where ß represents some physical parameter, for example, Reynolds number or vis- 
cosity and £ : X x A —> X* is C2. Equation (2.1) defines a solution function 
ß e A —> y(ß) £ X. We construct the reduced basis elements by the interpolation of 
solution function ß —> y(ß) as follows. 

The Taylor Subspace. In this choice, one uses the Taylor expansion of function 
y(ß) at a reference value of ß, say ß*, and the reduced basis subspace XR is defined 
as 

djv 
(2.2) XR = span{% \Vj = -^ |^. J = 0,...,M} 

The jth derivative yj can be calculated from the equations resulted by successive 
differentiation of (1.1), i.e. 

(2.3) £y(y0, ß0)Vj = Fj{yo, Vi, ■ ■ ■, Vj-i, M*)- 

For example, y\ satisfies the equation 

£y{yo,ß*)yi = -£ß(yo,ß*)- 

We note here that each yj can be obtained from its predecessors by solving a linear 
system with the same linear operator £y(y0,ß*). However, one cannot continue to 
use the same basis elements generated at fixed parameter ß* to compute solutions 
when the parameter of interest is significantly away from it. In such cases reduced 
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basis elements have to'be updated and the solution is sought in the new reduced basis 
space. Moreover, generating the right hand side of (2.3) could be quite complicated 
in certain problems. This choice has been used in [7] for structural analysis problems 
and in [8] for high Reynolds number steady state fluid flow calculations. 

The Lagrange Subspace. In this case, the basis elements are solutions of the non- 
linear problem under study at various parameter values pj. The reduced subspace is 
given by 

(2.4) XR = spanfoV = y(pj)J = 1,..., M}. 

The Lagrange basis was used to study structural problems in [1]. A possible advantage 
in this choice is that updating the basis elements can be done one basis element at a 
time instead of generating the whole space. 

The Hermite Subspace. This is a hybrid of the Lagrange and Taylor approach. The 
basis elements are solutions and their first derivatives at various parameter values pj. 
The reduced subspace Is given by 

dv —' 
(2.5) XR = sp&n{yj = y(pj) and -^-\ß=H,j = 1, • ■ •, M}. 

Suppose we have ;a reduced basis space XR in X. Let m = dim(XR) and {<&} is 
a basis of XR. Then we can construct the reduced-order equation by the Galerkin 
approximation, i.e., for ym = YHLI 

ai 4>i e XR 

(2.6) £m(ym,ß)i = {£{ym,v),(t>i)x»xx 

for 1 < i < TO. 
For the evolution equation 

(2.7) jty(t) + E(t,y(t)) = 0 

we, for example, generate reduced basis elements {(j>i}T=i in X by the solutions at 
TO different time instants to (2.7). Given the reduced basis space XR, we define the 
reduced-order equation for ym(t) = E™i ai(t)4>i, 

(2.8) (ftym® + E^'ym^' ^x'*x = ° 
for all 1 < i < m. In [4] this method has been carried out and its feasibility has 
been demonstrated for channel flow simulations in which reduced order solution um 

is formed by setting 
m 

um(t) = 5><(*Wi. 

where fa = ui+i — >Uj, i = 1,2,..., TO - 1 and <j>m = I^. We further take am = 1 so 
that the boundary'Conditions are satisfied. The solution um is computed from 

(f um,vm)-+ ^a(um,vm)-+ c(um,um,vm) = (f, vm)    for all vm e VJ1, 

where VJ1 = span{^ : i = 1,..., TO - 1} is the span of the test functions. 
The basis elements were generated by computing the flow from the full model at 

eleven time instances between 1 and 11. The time step used in the reduced order 
model was .001. 
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The dimension of the reduced basis space is very much problem-dependent. The 
reduced basis elements constructed by the above mentioned approach can be nearly 
linearly dependent. So we may further reduce the dimension by the conditioning of 
the mass matrix Q: 

Qi,j = {4>iAj)x- 

Our computational experiments and the computations reported for structural prob- 
lems in the references mentioned earlier seem to indicate that an accurate approx- 
imation can be obtained for large range of parameter values using 5 to 10 basis 
elements. Therefore, although the resulting reduced order model is dense, they are 
small compared to the sparse but large system that result from the standard basis 
functions. 

According to our comparison study carried out in [4] for driven cavity incompress- 
ible Navier-Stokes calculations, the performance of Hermite approach is better than 
that of Lagrange. The basis elements for the Lagrange approach were selected at 
Reynolds numbers 100, 300, 500 and 700, and that for the Hermite was selected at 
300 and 700. The comparison was carried out by computing the driven cavity flow at 
Reynolds number 1200. The L2-norm difference between the full mixed-finite element 
solution Uf and the reduced basis solution using these two approaches are as follows: 
||u/-u/||2 = 0.0889 and ||uh-u/||2 = 0.0766, where u; is the solution obtained using 
Lagrange approach and uh is that obtained using Hermite approach. 

3. Error Analysis 

In order to justify the reduced basis solution ym we need to have a post verification 
criterion. In general we formulate it as an error analysis as follows. Let X and Y be 
two Banach spaces and A be a compact set. Given a C2 mapping 

£:{y,ß)eXxA^£{y,ß)eY, 

and we consider the equation 

(3.1) e{y,p)=0. 

The family {(y(ß),p) : ß G A} is said to be a branch of nonsingular solutions of 
equation (3.1), i.e., 

ß —> y(ß) is a continuous function from A into X and Dy£(y, ß) is 
an isomorphism from X onto Y for all ß G A. 

Let us consider the reduced order problem 

(3.2) £m(yrn,p) = 0. 

defined on the reduced basis space Xm. We assume that £m : Xm x A —> Ym is C2. 
For the ease of our discussions we assume that Xm C X and YmcY. The norms on 
Xm and Ym are induced from X and Y norms, respectively. The problem is to find 
the solution ym G Xm such that (3.2) is satisfied for a given ß G A. 
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We assume that Dy£m(ym,ß) is an isomorphism from Xm onto Ym where ym is a 
given element in Xm. We introduce the following notations; 

em(M) = \\£m{ym, p)\\Ym, 

lm{ß) = \\Dy£m{ym, n)~l\\c(Ym,xm), 

Sm(u; a) = {v£Xm: \\u - v\\Xm < a}, 

Lm{ß\ a) =     sup    \\Dy£m(ym, ß) - Dy£m(v, ß)\\c(xm,Ym)- 
veS(ym,a) 

We next state a theorem regarding the error estimate which is derived from Theorem 
IV.3.1 in [2] for the approximation of branches of nonsingular solutions. 

Theorem 3.1. Suppose Dy£m(ym, ß) is an isomorphism of Xm onto Ym and 

2lm{ß)Lm(ß,2^m(ß)€m(ß)) < 1. 

Then the problem (3.2) has a unique solution (ym(ß),ß) such that: 

ym{ß) G S{ym;2^m{ß)em{ß)). 

In addition, ym(ß) is the only solution of (3.2) in the ball Sm(ym;a) for all a > 
2jm(ß)em(ß) that satisfy rym(ß)Lm(ß;a) < 1 and we have the estimate: 

\\ym(ß)-vm\\x < hm{ß)/{^-7m(ß)Lm{ß\a)]\\£m(vm,ß)\\Y   for allvm G Sm(ym,a). 

Moreover, we have the following corollary. 

Corollary 3.2. Suppose there exists an element ym G Xm such that Dy£(ym,ß) is an 
isomorphism of X onto Y and 

(3.3) 2i(ß)L(ß,2j(ß)e(ß)) < 1 

where 
e(ß) = \\£(ym,ß)\\Y, 

l(ß) = \\Dy£{ym,ß)~l\\c{Y,x), 

S{y; a) = {v G X : \\u - v\\x < a}, 

L(ß;a) = su-pveS{ym!a) \\Dy£(ym,ß) - Dy£(v,ß)\\C(XY)- 

Then the problem f3.1j has a solution (y(ß),ß) such that: 

y(ß) G S{ym;2j(ß)e(ß)). 

In addition, y(ß) is the only solution of ^3.1,) in the ball S(ym;a) for all a > 
2j(ß)e(ß) that satisfy ,y(ß)L(ß; a) < 1 and we have the estimate: 

\\y(ß) -v\\x< [7(M)/(1 - l(ß)L(ß;a)]\\£(v,ß)\\Y 

for all v G S(ym, a). ■ 
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We can apply Theorem 3.1 and Corollary 3.2 to obtain the following error estimate. 

Theorem 3.3. (i) Suppose ym{ß) £ Xm is a solution to (3.2) and assume ym = 
Umiß) satisfies the condition in Corollary 3.2. Then we have a solution y((i) £ 
S(ym;2/y(n)e(ii)) to (3.1) and the estimate 

(3.4) \\y(ß)-ym(ß)\\x < h(ß)/(l-j(ß)L(ß;a)}\\S(ym(ß),ß)\\Y 

with a = 7(/x)e(/i). 

(ii) Suppose there exits an element ym £ Xm such that the conditions in Theorem 
3.1 and Corollary 3.2 are satisfied. Furthermore, we assume that am = 2jm(ß)em(ß) 
satisfies j(ß)L(ß; am) < 1. Then we have (3 A) with a = an. ■ 

4. Optimal Control Problems 

In this section we discuss the optimal control problem and the application of re- 
duced basis method. Consider the minimization problem 

(4.1) min    J{y,u)    subject to £(y,u)=0 

over u £ Uad C U. Here X and U are Hilbert spaces and £ : X x U —> X* is C2. We 
assume that U = Rm and uaa is closed and convex. The Lagrange reduced space can 
be defined by 

XR = span{^' £ W,tf) = 0, j = 1,..., M}, 

where u? is a sampled point in Uad. In order to obtain a lower-order reduced basis 
space, if m is large then we may consider the following pre-selecting step: 

• Let ua, a £ A, be the points in Uad defined by 

ua = ü + J2 hau e{ 

where a is the integer-valued vector, and St and e, are the step size and unit 
vector in the i-th direction. 

• We determine ya £ X by solving £(y, ua) for each a £ A. 
• We find an index ceo m A such that J(ya,ua) is smallest. 
• Then, we select the sampling set Uj by 

u1=uao,    u21 = ua° + 6iei,    and   u2l+l = uao - 6t e». 

The Hermite reduced space can be defined by 

XR = span^y £ X x U\£{yj,uj) = 0 and -J~{uj), 1 < i < m, j = 1,..., M}. 

Here, £f = Q^:{
U

J) 
can ^e calculated by solving the sensitivity equation 

(4.2) £y(yi,ui)Zi = -£Ui(y0,ui). 

Here we can use the pre-selecting step to select u1* as for the Lagrange case. 
Suppose we have the reduced basis space XR. Then we use the Galerkin method 

to project the equation onto XR, i.e., ym = YHLI on 4>i £ XR satisfies 

£m(ym,u)i = {£(y,u),^i)x'xx- 
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Then we consider the reduced-order control problem 

(4.3) min    J(ym,u)    subject to £m(ym,u) = 0 and u G Uad- 

It is a finite dimensional constrained minimization problem and can be readily solved 
by the constrained optimization methods. A necessary optimality condition is given 

by 
!(Dy£m(ym, um)yxm + DyJ(ym, um) = 0 

(Du£m{ym, um){u - um), Xm) + DuJ(ym, um){u - um) > 0 

for all u G Uad, assuming Dy£m at the optimal pair (ym,um) to (4.3) is an isomor- 
phism. Similarly, we have the necessary optimality condition for (4.1): there exists a 
Lagrange multiplier A G X such that 

f (Dv£(y*,u*))*\ + DyJ(y*,u*)=0 
(4.5) 

[ (Du£(y*,u*)(u-u*),\)x.xX + DuJ(y*,u*)(u-u*)>0 

for all u G Uad, assuming Dy£mC(y*, u*) at the optimal pair (y*,u*) to (4.1) is an 
isomorphism. Suppose um and u* is interior points of Uad. Then we can apply 
Theorem 3.3 to equation for (y, A, u) G X x X x U 

[ £(y,u)=o 
(4.6) I   (Dy£(y,u))*\ + DyJ{y,u) = 0 

[ (Du£{y,u))*\ + DuJ{y,u) = 0 

In general we have 

J(ym,um) < J(ym(u),u) = J(ym(u),u) - J(y(u),u) + J(y(u),u) 

for u G Uad and thus setting u = u*, we obtain 

J{y(um),um) -J*< J(y(um),um) - J(ym,um) + J(ym(u*),u*) - J{y(u*),u*). 

Hence, if Uad is compact then 

J(y(um),um) -J*<2M max \\ym(u) - y(u)\\x 

for some constant M. 

5. The Reduced Basis Method for Flow Control 

In this section we discuss vorticity minimization in fluid flows using boundary tem- 
perature control and electromagnetic control. We first present the weak variational 
formulation of the optimal control problems and then discuss their approximations 
in finite element and reduced basis setting. 

Preliminaries. We denote by L2(Q) the collection of Lebesgue square-integrable 
functions defined on fi. Let H1^) = {v G L2(ty : ^ G L2(fi) for i = 1,2.} and 
Hjj(Q) = {v G iJx(Q) : v\r = 0}. Vector-valued counterparts of these spaces are 
denoted by bold-face symbols, for e.g., H(fi)l = [H1(n)]d where d = 2. We denote 
the norms and inner products for HS(Q.) or H(ü)s by || • ||s and (•, -)s, respectively. 
The L2(Q) or L2(fi) inner product is denoted by (•, •). 



K. Ito and S.S. Ravindran 161 

5.1. Electrically Conducting Flow Equations and Variational Formulation. In this 
section we describe the governing equations for a steady electrically conducting flow 
and their variational formulation. Suppose there is a length scale £, a velocity scale 
U and a magnetic-field scale B0 in the flow, then one can define nondimensional 
magnetic Reynolds number Rm = fJ,0aU£, where /z0 is the magnetic permiability, 
Alfven number Al = B%/n0pU2 and Reynolds number Re = p0U£/ß. Next, if we 
nondimensionalize according to x <— x/£, u <— u/U, j <— B0/£, E <— UB0 and p <— 
(p - g • x)/(p0U

2), we obtain the dimensionless equations for electrically conducting 
flow: 

u • Vu = -Vp + Al (j x B) + ^ Au   and   V • u = 0   in ft, 

j = Rm [-V0 + (u x B)]    and   V-j = 0   in ft, 

V x B = j    and   V • B = 0   in ft. 

Here, u denotes the velocity field, p the pressure field, j the electric current density, 
B the magnetic field and <f> the electric potential. Moreover, we denote by ft the flow 
domain which is bounded in R2 with boundary I\ 

To simplify the exposition, let us assume that we are dealing with a special case 
in which the externally applied magnetic field is undisturbed by the flow. That is, 
we assume that B is given. Such an assumption can be met in a variety of physical 
applications, for example in the modeling of electromagnetic pumps and the flow 
of liquid lithium for fusion reactor cooling blankets, see [10] and [12]. Under this 
assumption, the term j x B in the Navier-Stokes equations can be written as 

Al{j xB) = N (-V0 + u x B) x B 

where N = Al ■ Rm and if we eliminate j by applying charge conservation condition 
V-j = 0toj=i?m [-V</> + (u x B)], we arrive at the following simplified system 
modeling the flow: 

' -iAu + u-Vu+Vp + JV(V^-uxB)xB = 0   in ft, 

(5.1) V'U = 0   in ft, 

. -A0 + V • (u x B) = 0   in ft. 

where N is the interaction parameter. The system (5.1) is supplemented with bound- 
ary conditions 

(5.2) u = u0 on T,    4> = g on T0    and   n • j = 0 on I\ 

where T is the disjoint union T = r0uri and g denotes the control function, namely, 
electric potential on T0. Such a control can be effected by attaching electric sources 
with adjustable resistors to the electrode along the boundary. We assume that the 
flow is two-dimensional and the applied magnetic field B is perpendicular to the 
flow plane, i.e., B = (0,0, Boy, and that the cross product u x B is understood as 
(ui,u2,0)* x (0,0, B0y. Let ü G Hx(ft) and cj> e H1^) be such that 

ü = u0 on r    and   4> = g on FQ 
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(5.3) 

and Vi = {(/> G Hl(fl) : <f> = 0 on T0}. Then, variational formulation of (5.1)-(5.2) is 
given as follows: seek u G Hj(fi) + ü, p G L2{tt) and </> G H%(Q) + (f> such that 

f i(Vu,Vv) + 6o(u,u,v) + JV(V^-uxB,vxB) 

-(p,V-v)=0   VvGHä(fi), 

(V-u,g) = 0   VgGL2(Q), 

_ (V^-uxB,VV>) = 0   VV' G Vi. 

Here, the trilinear form b0(-, •, •) is defined by 

(5.4) &0(u,v,w) = (u- Vv,w) 

foru,v,weH1(n). 

5.2. Thermally Convective Flow Equations and Variational Formulation. In this 
section we describe the governing equations for a steady thermally conducting flow 
and their variational formulation. 

If we assume there is a length scale £, a velocity scale U and a temperature 
scale Ti — T0 in the flow, then one can define nondimensional Prandtl number 
Pr = ncp/n, Grashof number Gr = ß£3pl\g\(Ti -T0)/ß

2 and Reynolds number 
Re = p0U£/p- Next, if we nondimensionalize according to x <— x/£, u <— u/U, 
T <- (T - T0)/(Ti - To), and p <- (p - g • x)/(p0U

2), we obtain the following nondi- 
mensional form of Boussinesq equations: 

(5.5) 

-iAu + (u • V)u + Vp + |&Tg = 0 

V • u = 0   in fi, 

-livAr + u-V^ = 0   infi, 

where g is a unit vector in the direction of gravitational acceleration. 
We consider the boundary condition as follows. 

dT 
(5.6) u = u0 on T,    T = g on F0    and 

dn 
= 0 onTi 

where g represents the boundary temperature control function. Let T G H1^) be 
such that f = g on T0 and ü be as defined previously. Then, variational formulation 
of (5.5)-(5.6) is given by 

' ^(Vu,Vv) + 6o(u,u,v) + (/3Tg,v)-(p,V-v)=0   Vv G Hj(fi), 

(5.7)       I  (V-u,g)=0   VgGi2(fi), 

_ h (u, T, VO + K (VT, W)    VV' G Vi, 

for u G Hj(fi) + ü, p G i2(fi) and T G ^(ft) + f, where /3 = |&, « = ^ and the 
trilinear form &i(-, •, •) is given by 

&1(u,r,vO = (u-v:r)^>. 

for T, V e #*(n) and u G H1^). 
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We can establish the existence of solutions to (5.3) and (5.7) using the above 
properties of the trilinear forms and the Hopfs lemma, see [5]. 

5.3. Mixed Finite Element Approximation. In order to construct the reduced basis 
element we use the mixed finite element method [3] to approximate solution to (5.1)- 
(5.2) and (5.5)-(5.6). 

Let us define, using standard finite element notations, 

Xh = {v G C°(Q) : v\K G P2(K), on each element K} , 

Xh {v={v1,v2)
T£C°(Sl):vi£Xh, i = l,2} 

and 
Sh = {q G C°(fi) : q\K G Pi(K), on each element K}. 

Also we define Xg = {v G Xh : v = 0 on T} and X% = Xh D Vx. That is, we choose 
continuous piecewise quadratic polynomials for both components of the velocity uh 

and electric potential cj>h for (5.1) and temperature Th for (5.5), continuous piecewise 
linear polynomials for the pressure ph. On each triangle, the degrees of freedom 
for quadratic elements are the function values at the vertices and midpoints of each 
edge; the degrees of freedom for linear elements are the function values at the vertices. 
Here, the spaces are defined over the same triangulation of the domain Q, = \JK. 
This selection is known to satisfy the inf-sup condition, see [2]. 

The finite element equation of (5.3) for uh G Xh, ph G Sh and </>h G Xh is given by 

(5.3)" 

Re (Vuh,Vvh) + b0(u
h,uh,vh) 

uftxB,vftxB)-(/,V-v/l)=0   VvftGXg, 

(V-uh,qh) = 0    VqheSh, 

w (V(ph - uh x B, Viph) = 0,    Vtph G X\. 

where u^r = UQ and ^ft|r0 = gh and Ug, gh are the projection of u0, g onto the finite 
element spaces, respectively. Similarly, for the Boussinesq equation (5.7) we have 

Re 

(5.7)" 

(Vuh, Vvft) +b0(u
h, uh, vh) + (ßTh g, vh) - {ph, V • vh) = 0 Vvfe GX; 

{V-uh,qh) = 0   \/qheSh, 

. &i(iA Th, i>h) + K (VTh, V^)    \/iph G X£, 

where uh £Xh, Th G Xh satisfy u^lr = uj and Th\ro = gh, respectively. 

5.4. Boundary Control Problems and Reduced-Order Control Problems. Let U be 
the control space defined by 

p 
u = {9 = J2 9i Xi,   9i e R} 

i=i 

where Xi is the i-th basis function of U and is the trace of a Hl(Q) function onto r0. 
We consider the minimization of the form 

(5.8) mm |V x U||Q    subject to (5.3) or (5.7) 
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where the vorticity V x u is defined by V x u = §^ - f| and the cost functional 
defines the total friction forces in fi. 

We define the reduced basis element by the finite element approximation (5.3)h 

and (5.7)h, respectively for each control problem. For example, the Lagrange re- 
duced basis element (u,p,T) given gj G U for problem (5.8) subject to (5.7) can be 
constructed by a solution (uh,ph,Th) to (5.7)'1 given gj G U. For the case of the 
boundary control problem, the reduced basis space XR C Xh x Xh should consist 
of the basis element $g that corresponds to the reference control g G U, the ele- 
ment $) that corresponds to the j-th control in the direction of Xj, and tne test 

functions tyh e XRD (Xj x X%). Since uh satisfies the pseudo-divergence condition 
(V • uÄ, qh) = 0 for all qh G Sh we have the reduced-order control problem; 

min    ||V x U^HQ    subject to 

(5.9) ■   ±(Vuh,Vvh) + b0(u
h,u\vh) + (ßThg,vh) 

+b1(u
h,Th,iph) + K(VTh,Viph) = 0 

for all #h = (vh,iph) eXRn (Xg x Xf). Here, the element in XR is represented by 

j=i       °i 

where $ft = (^ Th)o is a solution to (5.7)A corresponding to the reference control, 
$£ = (uh,Th)j - (uh,Th)0 for 1 <j <p, with (uh,Th)j being a solution to (5.7)h 

corresponding to g + Sj Xj and {^} are a basis of the test function space XR n (Xft x 

dis- 
similarly, for problem (5.8) subject to (5.3) we have the reduced-order control 

problem; 

min    ||V x uh\\n   subject to 

(5.10) |   ^(Vuh,Vvh) + 60(u
fc,uh,vh) + JV(V^,-uhxB)v

hxB) 

+(V^-u''xB,V^) = 0, 

for all tf h = {vh, iph) £XRn (Xg x X*). 

6. Computational Results 

In this section we will give computational result by implementing the computa- 
tional procedure for the specific control problem described in §1 using the two pro- 
posed control mechanisms. We select the backward facing step channel for our study, 
a schematic of this geometry and the finite element grid are given in Figure 6.1 and 
Figure 6.2, respectively. It has been observed in a number of computational and 
experimental study on this specific channel geometry that a recirculation appears 
near the corner region for large Reynolds number. Our aim is to remove/suppress 
the recirculation by means of boundary control. 
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FIGURE 6.1. Schematic of backward-facing step channel 

'top 

n 

bottom 

FIGURE 6.2. Finite element grid for the channel geometry 

6.1. Boundary Temperature Control. The aim is to shape the flow to a desired 
configuration which in our study means to remove the recirculation by means of 
controlling the temperature along the bottom part of the boundary. 

We assume that the inflow and outflow are parabolic, i.e. we take the inflow to 
be Uj = 8(y - 0.5)(1 - y) and the outflow to be u = u0 = y(l - y). We take 
the Reynolds number to be 200 and -^ to be 1. For the temperature we used the 
following boundary conditions: 

TS1 and Tout : 
TS2 and rbottom : 
rin and rtop : 

^=0 On        U 

T = 9 
T = l. 

Figure 6.3 qualitatively demonstrate the flow for high Reynolds number. Here our 
objective is to remove the recirculation that occurs in the corner region Q*. Therefore 
we minimize vorticity in the corner region fi* which is chosen to be Q* = (1,3) x (0, .5). 
This leads us to a constrained minimization problem of the type (5.8) and this is 
solved by the reduced basis computational method described in §5.4. 

Basis elements are computed with g=l, 0.875, 0.75, 0.625, 0.5, 0.3775, 0.25 and 
denoted by (u;, T»), i = 1,..., 7. The test functions {*i,..., ^5} are chosen so that 
they have zero boundary conditions. The trial function $! corresponds to the control 
force such that $i = 0 everywhere on the boundary except on the bottom. 

Then we set 

(u,r) = $0 + ^x^ + X>*<. 
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FIGURE 6.3. The velocity field for the uncontrolled case with Re=200 

FIGURE 6.4. The velocity field for the controlled case with Re=200: 
Temperature control 

where g = 1, 6 = -0.75 and 

$0 = (111,71),     ^^CUT.TT)-^!,^), 
*! = (u7,T7) - 2(u6,T6) + (u5,T5),    *2 = (u6)T6) - 2(u5,T5) + (u4,T4), 
*3 = (US.TB) - 2(u4,T4) + (u3,T3),    *4 = (u4,T4) - 2(u3,T3) + (u2,T2), 

. *s = (u3,T3) -2(u2)T2) + (ui.Ti). 

The constrained minimization problem is solved by employing Newtons method 
to the necessary optimality condition (4.4). We obtained the boundary temperature 
control T = 0.516 in 7 Newton iterations. The computed control was then used in 
the full system to simulate the flow. The resulting flow shown in Figure 6.4 shows 
significant reduction in the size of the recirculation region. 

6.2. Electromagnetic Control. In this problem, control is effected through bound- 
ary electric potential on the top and bottom boundary of the backward facing step 
channel. A magnetic field B = (0,0,1) is applied into the fluid. The boundary con- 
ditions for the velocity are the same as in the preceding control problem except for 
the electric potential whose boundary conditions are as follows: 

0 rS2,rinandrout: d± 
dn 

top ■ = 01 

= 92 
= 1. 

1 bottom * 
rS2: 

We take the Reynolds number to be Re = 200 and the interaction parameter to be 
N = 1. Here also our objective is to suppress the recirculation that occurs in the cor- 
ner region tt* and thereby obtain a relatively smoother flow. Therefore we minimize 
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FIGURE 6.5. The velocity field for the controlled case with Re=200: 
Electromagnetic control 

vorticity in the corner region Q*. This leads us to a constrained minimization prob- 
lem of the type (5.8) and we use the reduced basis computational method described 
in §5.4 to solve it. 

The basis elements were computed with 

($i,<fc)=(l.l), (1,0.5), (1,0), (0.5,1), (0.5,0.5), (0.5,0), (0,1), (0,0.5) 

and the corresponding elements are denoted by (u;, </>;), i = 1,..., 8. The test func- 
tions {^i,..., ^5} are chosen so that they have zero boundary conditions. The trial 
functions $1 and $2 corresponds to the control force such that $1 = 0 everywhere 
on the boundary except on the top and $2 = 0 everywhere on the boundary except 
on the bottom. Then we set 

5 

$2 + X>^> 
01 

92 - 92) 

62 

where g\ = §2 = 1, <5i = 62 = —0.5 and 

'   $o = (ui,0i),      $1 = (U3,03),      $2 = (u7,07), 

*1 = (Ul,0l) -2(U2,^2) - 2(U4,<£4),      *2 = (Ui,0i) - (U3,<^3) - (U7A), 
*3 = (Ui.^i) - (u5,(f>5) - (U2,<^2) - (u4,</>4),      *4 = (Ul,^l) - (u8,</>8) - (U2,02), 

,   *5 = (U1,^1)-(U6,^6)-(U4,^4). 

We employed the Newtons method to the necessary optimality condition (4.4) and 
obtained the boundary controls 4>tor) = 1-0423 and </>top = 1-7735 respectively, in 5 
Newton iterations. The computed control was then used in the full system to simulate 
the flow. The resulting flow shown in Figure 6.5 shows significant reduction in the 
size of the recirculation region. 

In conclusion, we have demonstrated the feasibility of using reduced basis method 
in both one parameter and two parameter control setting. Two different control 
mechanisms have been used in two different fluid flow setting. Our numerical results 
seem to indicate that the reduced basis method can be successfully used in flow control 
problems with significant reduction in computational cost compare to the results 
presented in [3], [5] and [9] for the same problems where computations were performed 
by directly applying finite element methods to the optimal control problems. 
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ABSTRACT. The application of a proximal point approach to ill-posed convex control prob- 
lems governed by linear parabolic equations is studied. A stable penalty method is con- 
structed by means of multi-step proximal regularization (only w.r:t. the control functions) 
in the penalized problems. For distributed control problems with state constraints conver- 
gence of the approximately determined solutions of the regularized problems to an optimal 
process is proved. 
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1. Introduction 

In this paper the proximal point approach coupled with the penalty technique 
is developed for solving ill-posed convex parabolic control problems with state con- 
straints. The investigation is concentrated on problems governed by linear parabolic 
equations, the objective functional and the sets of admissible controls and states are 
assumed to be convex. 
Usually, convergence of numerical methods for such problems is studied under the 
additional assumption that the objective functional is strictly (or strongly) convex 
w.r.t. the control, or that the optimal control possesses the bang-bang property. 
We refer here to ALT AND MACKENROTH (1989), GLASHOFF AND SACHS (1977), 
HACKBUSCH AND WILL (1984), KNOWLES (1982), LASIECKA (1980, 1984), MACK- 

ENROTH (1982-83, 1987), MALANOWSKI (1981), TROELTZSCH (1987). 
The first results, connected with the use of the penalty technique for control problems 
are obtained by LIONS (1968) and BALAKRISHNAN (1968 A,B), for further applica- 
tions see LIONS (1985). Penalization of the state equation permits to handle with 
control and state variables as independent ones. In BERGOUNIOUX (1992, 1994), for 
convex elliptic and parabolic control problems with state constraints, penalty meth- 
ods have been used in order to prove the existence of Lagrange multipliers under 
weak qualification hypothesises. 
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In all these investigations strong convexity of the objective functional was one of the 
essential conditions. 
The paper presented here deals with convex parabolic control problems without addi- 
tional assumptions mentioned above. So, the problem may be non-uniquely solvable, 
moreover, we don't exclude that the set of optimal controls can be unbounded. Using 
the scheme of multi-step regularization developed in KAPLAN AND TlCHATSCHKE 
(1994) for abstract convex variational problems, a partial proximal regularization 
(w.r.t. the control only) of the family of penalized problems is performed. This per- 
mits to handle with well-posed auxiliary problems and to ensure weak convergence 
of their approximately determined solutions to an optimal process, as well as conver- 
gence of the corresponding values of the objective functional to the optimal value of 
the original problem. 
For convex elliptic control problems an analogous approach has been realized in 
HETTICH, KAPLAN AND TICHATSCHKE (1994, 1996). In the last two decades prox- 
imal point technique is sucessfully developed for solving variational inequalities with 
monotonous operators, including convex optimization problems and saddle-point 
problems. ECKSTEIN AND BERTSEKAS (1992) have shown a relationship between 
the proximal point method and the Douglas-Rachford splitting method, pointing out 
new application fields, especially in mathematical physics. Nevertheless, besides the 
papers mentioned here, we don't know publications, where proximal point technique 
was applied to control problems. 

2. Formulation of the control problem 

Let fi c 1" be a bounded domain with a boundary oft of the class C2, ft be locally 
situated on one side of 9ft, and 

Q = ft x ]0,T[,   £ = dft x ]0,T[. 

In the sequel we use the following notation for functional spaces: 
L2(0,T;Z) - space of functions with range in a Hilbert space Z, square integrable 
on(0,T), 

IMU2(O,T;Z) = [J0 IK*) III*)   ; 

|| • ||O,Q - norm of an element in L2(0,T; L2(Q)); 
C7([0,'T]; Z) - space of continuous functions on [0,T] with range in Z, 

|Mlc([o,r];Z) = maxa<t<T\\v{t)\\z; 

iP(ft), #0
s(ft) - standard Sobolev spaces, L2(Q) = H°(ü), II • ILfi - norm in #s(ft); 

|| • ||0iSin - norm in L2{0,T; Hs{tt)) for s > 1; 
(•, -)n - inner product in L2(Q); 
X <-^ H - continuous embedding of the space X into H. 

We consider the parabolic equation 

(2.1) T|(X, t) + Ay(x, t) = u(x, t)    a. e. in Q, 



y(x,0) = 0 in fl, 
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(2.2) 

(2.3) y(s,t)=OonE, 

where the elliptic operator A is given by 
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(2.4) 
n     d   ( dy 

Ay = ~ E ^r I ay(a:'*)«r-) + «oC1»*)^ 
;^i ^ 9a; i 

with aij G C2(Q), a0 G C2(Q) such that for all (x, t) G Q, £ G K™ and some d0 > 0 
n n 

(2.5) o0(a;,i) > 0  and   YL aij{x,t)täj > doY, $■ 
i,j=l i=l 

For each u G U = L2(0,T;L2(D,)) Problem (2.1)-(2.3) is uniquely solvable, and its 
solution yu belongs to 

(2.6) W = {yeL2(0,T;H\ü)nH1
0(ü)) : ^eL2(0,T;L2(Ü)),y(x,0)=0 in Q} 

(see, for instance LIONS AND MAGENES (1968), vol. 1.). The space W endowed by 
the norm 

,     2    \l/2 
(r, v\ II II     i ii ii^    ,  dv (2.7) \\y\\w- II II2 

liy|lo,2,n dt 0,Q/ 

is a Hilbert space. Moreover, (ibid., Theorem 1.3.1) 

and the operator T : Tu = yu is continuous as a mapping from L2(0, T; L2(D,)) into 
C([0,T\;H^(Q)) (see LIONS AND MAGENES (1968), vol. 2.). 

In order to formulate the control problem we introduce the space 

(2.8) Y = {y G L2(0,T; ff^fi)) ■ ^ + Ay G L2(0, T; L2(fi)), y(x, 0) = 0 in fi} 

which coincides algebraically with W: Indeed, regarding the smoothness of Oy,Oo, 
the inclusion W C Y is obvious, and the inclusion Y C W is a consequence of the 
fact that yu GW for each u & U. 
Using the inequality 

IMIw < c||y||y Vy G Y, 

which follows from the Lp-estimates for the solutions of parabolic equations (see 
LADYSHENSKAJA, SOLONNIKOV AND URAL'ZEWA (1968), Theorem 4.9.1), one can 
easily show that the space Y with the norm 

dy 
(2.9) \\y\\Y = dt 

+ Ay 
0,Q 

is a Hilbert space, too; moreover, 

y^c([o,T];^(n)). 
The approach suggested will be presented with the following model problem 
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Problem (P) : 

minimize J(u)■= l\yjT) -yd\\o,n  subject to  u G Uad, yu G G, 

where Uad and G are convex and closed sets in the spaces L2(0,T;L2(fl)) and Y, 
respectively; yd G L2{tt) is a given function and it is supposed that {u G Uad : yu G 

Due to the continuity of the mapping 

the functional J is continuous on L2(0,T;L2(Q,)).   Therefore, if Uad is bounded, 
Problem (P) is solvable, but in general, non-uniquely solvable. If Uad is unbounded, 
it may happen that the set öf optimal controls is empty or unbounded. 

We introduce the space 

S = yx£2(0,T;L2(n))1 

endowed by the natural norm: Tor z = (y,u) with y eY, U G L2(0, T; L2(Q)), 

(2.10) JMS=(M&+HO,Q)
1/2

- 

3. Regularized penalty method (RP-method) 

Method (Multi-step regularization) 
Let {r{}, {ei}, {xi}, and {£} be positive sequences with 

Umi^ocTi = 0, supi n < 1, lirrii^co— = 0, supi X; < 2, 
Xi 

and u° G Uad- 
Step i: Given u1^1 G Uad- 
a) Set uifi := u*"1, 5 := 1. 
b) Given u^8'1, let 

(3.1) (yi-s,üi'8) = a.rgmm{-$itS(y,u)  :  (y,u) G G x Z7ad} 

with 

(3.2)   ^Uy,u) = \\y{T)-yd\\ln + l -^- + Ay-u 
dt        y 

2 

+ X*|L_uM-l||2    . 
o,Q      * 

Compute an approximation (y^,«*-8) G G x £/ad of (y*'8,^'8) such that 

(3.3) |(yi,s^M)-(yi,s,ö^)L< J. 
11 w A* 

c) If H«*'8 - wi,8_1||o,Q > Su set s := s + 1 and repeat b). 
Otherwise, set ul := uM, s(i) := s,i:=i + 1, and continue with Step (i + 1). 

Of course, the stopping rule (3.3) is not yet practicable. But, as it will be shown 
below, the functional *iiS is strongly convex on 5. This usually permits to satisfy 
(3.3) by means of a stopping criterion of an algorithm, minimizing \I>M on G x Uad. 
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4. Convergence of the RP-method 

For shortness, in the sequel we will use the following abbreviations: 

(4.1) z = (y,u),z* = {y\ u*), z^ = {f\#s) etc. 

Let 
2 \!/2 

(4.2) 
dy 
dt 

+ Ay -u IIO.Q 

We start with some preliminary statements. 

Lemma 4.1. On the space H relation (4.2) defines a new norm 
to the norm II • 11=:-* 

which is equivalent 

(4.3) ■j=\\z\\s < N < v%||a. 

Proof.   The right-sided inequality in (4.3) is obvious, and 
2 

dy 
dt 

Ay — u +  u 
0,Q 

Udl+Ay)-nu 
o,<5 

dy 
dt 

Ay 

1, 1, 
> -3llUHo,Q+gllUllo,Q- 3, 

proves the left-sided inequality.     D 

Lemma 4.2. The functional tyi>s is continuous and strongly convex on E. 

Proof. Due to Lemma 4.1, continuity of \\y(T) — 2/d||o,n on H ensures continuity of 
ty^s. Now, let us prove strong convexity. To this end, we rewrite the functional as 
follows: 

MT)-Vätn+fl     Xi' ^i,s(V'U) 

Xi 
"2 

dy 
dt 

Ti        2 
2 

dy 

dt 
+ Ay -u 

0,Q 

+ Ay -u 
o,Q 

#ll«-«M"1i 2 II Ho,Q 

(4.4) 
dy 
dt 

+ Ay -u \\y(T) - uWlfl + (£ - f) 

-# i«M_iir - xi r Ut),^3-1^)) 2 II llo,<3    ^ Jo   ^ "n 
di + fl(y,«)l 

Because of r» < 1, Xi < 2 the term in the square brackets is a quadratic functional with 
a non-negative quadratic term in (y, u), hence, it is a convex functional. Therefore, 
taking into account Lemma 4.1, ty^ is strongly convex on the space E with the norm 
II • HE or I • I.     D 
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The following result is an analogon of Lemma 22.3 in KAPLAN AND TICHATSCHKE 

(1994). Let Z be a Hilbert space with an inner product ((•, -))z and a norm \-\z\Z\ 
be a closed subspace of Z and V : Z —> Z\ be the orthogonal projection operator. 
We consider the problem 

(4.5) minimize $(z) = a(z, z) - £(z) subject to z G K, 

where a(-, •) is a continuous, symmetric and positive semi-definite bilinear form on 
Z x Z, £ is a linear, continuous functional on Z and if C Z is a convex, closed set. 
Further, suppose that b(-, •) is a second symmetric bilinear form on Z x Z such that 

(4.6) 0 < b{z, z) < a(z, z) for z&Z, 

and, with some ß > 0, 

(4.7) &(*,*) + \\Pz\\% > ß\\z\\% for all z £ Z. 

By 

(4.8) |z|! = &(*,*) + \\Vz\\2z 

another norm is defined on Z, which is equivalent to || • \\z according to the obvious 
relation 

(M+l)\\z\\%>\z\z>ß\\z\\z 

withM>supz^0j^. 

Lemma 4.3. For each a0 £ Z and 

(4.9) a1 = arg min {$(*) + ^\\Vz - Va°\\2z  : z G K} 

(x G (0,2] is kept fixed) the following inequalities are true for all z G K: 

(4.10) la1 - z\% - \a° - z\% < -\\Val - Va°\\% + £[*(*) - ^)] 
A. 

and 

(4.11) \o}-z\z  <  \a°-z\z + v{z), 

with 
l{Q(z) - Qia1))]1'2    if$(z)>$(a1) 

0 otherwise 

If, moreover, \\Pa} - Va°\\z >6> r](z), then 

(4.12) la1 - z\z < \a° - z\z ^ 

Now we come back to the control problem. 
• The case of a bounded set Uad 
Assume there exists a point ü G Uad such that 

rf{z) - 62 

2\a°-z\z' 

yü = Tu G int G {in Y). 
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Lemma 4.4. Let (y*,u*) be an optimal process of Problem (P), v G (0, \) be an ar- 
bitrary number. Suppose that u1'8"1 G Uad is arbitrarily chosen and (yhS,ühS) and 
(jji,e^ui,s^ are defined \,y ß.\) and f3.3j with this u1'3^1. Then there exist two con- 
stants d(v) anddi, independent of i, s > 1, ul<s~l, {e»}, {r,}, and {Xi}, such that 

(4.13) Ji(y*,u*) - J^8, SM) < d{v)r\^ 

and 

(4.14) 

with 

(4.15) 
dy 

Ji{y>u) = \\y(T)-yd\\o,a + - dt 
Ay — u 

Underline that | • | is defined by (4.2), and the controlling sequences {rt}, {e^}, and 
{Xi} are chosen according to the RP-method. 
Proof.   The existence of the points (yi,s, üi,s) and (yhS, ul,s) is guaranteed by Lemma 
4.2. Now, we introduce the following notation: 

yi<* = Ti?*,   r-'^'V),   z(u) = (Tu,u), 

Tmin = min \\Tü - w\\Y,    r, 
weoG 

max - max \\z(u) - z(u) 

w  =axgmmveGxUad\\z    - v\\E . 

Note that rmax > rmin if {Tu : u G Uad} f~l dG ^ 0. In case of yi,s g" G we define the 
points 

/iM G {z(ü) + A (li,s - *(ü))   :  A > 0} n {dG x Uad} , 

and (if /ii,s ^ u/-s) 

fcM G {*(«) + A (z"s - u/'s)   :  A > 0} n [ti>s + p (ti<s - wl's) ß>0}. 

Obviously, the points hl's and kl's are uniquely determined, and 

\\z    — wl- ■A*' 

\W>S - z(ü)\\B      \W'S - z(ü)\\E 

Due to the trivial implication — 1 ^ | = ^ => ^-g = -^, we obtain 

ll-*>8       i ~\\\ 
..   -• - .   .i p      — 2(1I)L 

h1' 

(4.16) 

||fci-s-2:(w)||s + 

'max    II ^i,s i « 
<         \\Z      — W 

2      — «J': 

—2jS 7   S 

In the standard manner the Gateaux-differentiability of the functional 
2 

dy 
dt 

+ Ay -u 
0,Q 

^i|U, _,,M-i||2 
9 \\u      u \\0,Q 
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in the space E with the norm | • | can be established. Regarding the definition 
of (f 's,üM), we obtain by means of Proposition 11.2.2 in EKELAND AND TEMAM 

(1976) that, for all (y, u) G G x Uad, 

\\y(T)-yd\\ln-\\fs(T)-yä\ lo.n 

(4.17) 

2   rT (dtf>8{t) 

nJ 
dy(t) 

+-[ l^ + VW-^t) n Jo dt 

dt 
Ay(t) - u(t) - d^ _ Afs{t) + Ui,s{t))   dt 

+Xi [ («^(t) - u^-\t) , u(t) - ui>s(t))n dt > 0. 

Setting y = y*, u = u* in (4.17), in view of ^ + Ay* - u* = 0 and the obvious 
inequality 

(4.18)    llu - u*--1!!' _ - llöi,s - wM_1 
ii2 

llo.Q 

ii2 

llo.Q 

> 2   F (#s(i) - u*'-1^) , u{t) - ü'-a(t))ndt, 

one can conclude that 

<"9>  _ 

Thus, 

dtf 
dt 

+ Afs - # <\\y*{T)-yd 

0,Q 

|2     _i_ X* ||„,*       „,j,s—1 
^   w   - U" 

|2 

lo,Q ' 

(4-20)   |^|y<(I)' a(llir(r)-wllSfl+f K -«^Q   +|^|0iQ• 
Now, regarding the boundedness of Uad, r* < 1,  Xi < 2, lim^^ ^ = 0, and 

condition (3.3), inequality (4.20) yields 

\W'S\\     <Cl,      Ü'        < Ci (4.21) 

(all the constants ck in this proof don't depend on (i,s)).  Estimate (4.14) follows 
immediately from (4.21) and the equivalence of the norms || • ||3 and | • |. 
Due to (4.21) and 

IMIW<C|MIK   for all y eF, 

one gets 

(4.22) 

Inequality (4.19) ensures also that 

|j/''"||     < C2,    l^'l^ < c2 with c2 = CCi. 

(4.23) 
dtf'' 
dt 

+ Af's - ü1'' <czrt 
1/2 

o,Q 
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Taking into account that ^fjf- + Ayl<s - ul's = 0, this leads to 

\\yi's-yi's\\Y<c3r]/2 

\-is        ^i,s||      ^ 111 
\Z      — Z      I     < CzTi     . 

,V2 

(4.24) 

and, due to \\yhS — yhS\\Y = \\zhS - ^'S|„ > we obtain 

(4.25) 

Because zhS £ G x Uad, the estimate 

(4.26) |wi'a-F'-||n<c3r-J-' 

follows from (4.25) and from the definition of whS. 
Denote by 

Zf = {z = (Tu, u)  :  zeGx Uad} 

the set of feasible processes and 

T's=(yi's,ui-S)=arg   min{||^s - z\\s ■  z £ Zf]. 

If yl's $ G and whS ^ hhS, then on account of hl,s £ Zf, we obtain from (4.16), (4.25) 
and (4.26) that 

y-* - z" 

(4.27) <   \\zl's . + lir's-/ii-siL<(^ + iW/2 

If f'8 g- G, but w^ = K"s, estimate (4.27) follows from (4.25), (4.26) and rmax > rmin. 
In case yl's £ G, the inequality 

(4.28) IM.«_s*.«ll   ^^V2 \\zl's - zhS\\   < czr\ 

is an immediate consequence of (4.25). 
Inserting into relation (4.17) y = yl's, u = ul's, one gets 

2 

ll^'CO-itollvi- 
dyl- 
dt 

+ Ayl's - «*■ 
o,0 

- F   v   y     yallo,n    A II llo.o II 11 o,o 

and hence, 

dt 
dt 

■ Ay1'8 - u1'1 

o,o 
<   \W'S{T) - ^s(T)|ofi ||r

s(T) + f{T) - 2yd\ 

(4.29) + Xi W's-u*' Ü*,« _„<,<-! || 
IIO.Q II 110,0 

Because of Y ^ C([0,T];H%(Q.)), (4.22), (4.27), r* < 1, ;& < 2 and the boundedness 
of Uad, inequality (4.29) leads to 

dt (4.30) 
dt 

+ Ayl's - «*' <cin 
3/4 

o,0 
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Using (4.30) instead of (4.23), the estimates (4.24)-(4.26) can be improved (w.r.t. the 
order) and we obtain 

(4.31) 
||_js       ^M||      , 3/4 
\\Z      - Z      L < C4?i     , 

(4.32) \\whS - z ' ||„ < cArl 

Thus, similar to (4.27), (4.28), the inequality 

3/4 

< + 1 ] c4rf 

can be established. 
A multiple repetition of this operation (using in each step the current estimates) 
leads to the conclusion that, with arbitrarily fixed v e (0, \) and some constant c(u), 
the estimates 

(4.33) 
dt 

+ Ay4'3 - öM < c{v)r. ,l-2i/ 
i        > 

(4.34) 
_7 o       do        ^  ( 'max    ,   1 \    /   \ 

\\zl's - z' \\_ < h 1   c(v)r. 
\\ZL V T     ■ \ ' rn.i.m. 

\-2v 

are valid uniformly w.r.t. («, s). Now, from the obvious equality 

JiCO - Ji (*<■•)   =   \\y\T) - ydf0>n - \\F'(T) - yd(   + ||r (T) - yd(Qfl 

\ws(T)-yd\ 
|2 1 
10,0       n 

dtf' 
dt 

+ Ay4'8 - ül 

o,0 

due to \\y*(T) -yd\\oft < |f's(T) -%|0,n' (421)' (434)' and the embeddinS Y ^ 
C([0,T];HZ(Q)),weget 

Ji(z*) - Ji (V's) < d{v)r]-2», 

with d(y) independent from (i,s), i.e. estimate (4.13) is true.     D 

Theorem 4.1. Assume that Uad is a bounded set and Tu € intG for some ü € Uad; 
that v 6 (0, |) is a fixed number and that constants d(u), di are defined according 
to Lemma 4.4. Let the positive sequences {n}, {ej, {xi\, and {6i} in the RP-method 
satisfy the conditions 

(4.35) 

and 

(4.36) 

oo   j.l/2-f oo    £. 

supr-i< 1, supxi <2,   J2-LTj2-<0°>   Y,7r<00 

i « »=1    Xi »=1 Xl 

2di I    W   X 

.1-2./ / ,  N 2N 
C7. V3^<0,   «5i>- 

X« Xi 
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Then, for any starting point u° G Uad, the RP-method is well-defined, i.e. s(i) < oo 
for each i, and {u{'s}, {yi,s} converge weakly in L2{Q),Y to u,y respectively, where 
(y, u) is an optimal process for Problem (P). 

Proof. Let us assume that s(i) < oo for i = 1,..., k -1. Then, starting in step i = k 
with ufc_1 = n^-L^fc-1), due to the definition of s{i), (3.3) and (4.36), we conclude 

||äM_ufe,«-i||        >    |Lfc,._uM-i||      _|LM_öM|| 
0,Q     ~     II H0,Q       II IIO.Q 

Xk 
>   6k - — > 0 for 1 < s < s(k). 

Together with inequality (4.13) and 

U{vj^-Uk-^\   <0 
Xk     V     Xk) 

(cf. (4.36)), this implies 

(4.37) \\uk>s - u^f    > — \jk{z*) - Jk(z
k's)] for 1 < s < s(k). 

II II0.Q        Xk  l J 

Let z1'0 = (Tu°,u°). Applying (4.13) and Lemma 4.3 with 

Z = E,   Z1 = {z=(y,u)eE: y = 0},   $ = Jk, 

a(Z, z)=wn y(T)h+±-k [(^+Mt) -«(«), ^f1+m) - m)f, 

b(z, z) = [ (^ + Ay(t) - u(t) ,d^±+Ay(t)- ü(*)) ^ dt, 

£(z) = 2(y(T),yd)n,   K = G x Uad,   a
0 = zk's~\   X = Xk,   and 6 = Sk - ^-, 

Xk 

we obtain from (4.12) and (4.14) 

(4.38) -k,s        ^*\ 

< Iz^-1 - z*\ + -V \2d(u)^- -(«*-—)   ) for 1 < s < s(k). 1 I     2<2i I Xk        V        Xk)   I 

Using (3.3), (4.3) and (4.36), inequality (4.38) yields 

(4.39)    \zk's - z^-^'*-1 - z*\ 

1   /„„ ^^i-2,'     (c       ekV\   ,    rek 
< 2di 

2d{v)r^- -(sk-^-) )+ \/3- < 0. 
i Xk        \        Xk)   I Xk 
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Inequality (4.39) proves that s(k) < oo, because the middle term in (4.39) is inde- 
pendend from s. 
Now, for s = s(k), the use of Lemma 4.3 with the same data as above, leads to 

=fe,s(fc) z*\ < L?M*)-i - z* 2d{v) 
Xk 

hence, 

(4.40) Lfc,s(fc) _   *| ^ Lfc,«(fc)-i _ z*\ _i_ 2d(v)- 
„1-2J/ 

Xk 
V3^. 

Xk 

Taking into account that the finiteness of s(l) can be proved quite analogously, we 
infer that 

s(i) < oo for each i, 

and the inequalities (4.39) and (4.40) are valid for each k. 
In view of (4.39), (4.40) and (4.35), Lemma 2.2.2 from POLYAK (1987) ensures the 
convergence of the sequence {\zhS — z*\}, and with regard to (3.3), (4.3) and the last 
inequality in (4.35), the sequence {\zi<s - z*\} converges to the same limit. 
Suppose that {zik'Sk}, with sk > 0 for each k, converges weakly to z = (y,ü) e H. 
Due to (4.34), (4.35), jpfc'sfc} converges weakly to z, too. Observing the convexity 

and the closedness of Zf and that |ll*;'s':} C 2/, we conclude that z £ Zf. 
But Lemma 4.3 yields also 

^i,s—1 < - [Jitf) - Ji (V'S) 
Xi 

and by definition of J, (cf (4.15)) 

Jt(z*) = \\y*(T) - ydf^ = JK),    3^) > \\ts(T) - yd(ofl ., 

hence, 

■ z     — \z i,s—1 
Z \    < — 

1       Xi 
J(u*)~ W''{T)-yd\ o,n 

Due to the convexity and the continuity (in Y), the functional \\y{T) — 2/d||0,n is 
weakly lower semi-continuous. Taking limit in the last inequality w.r.t. the subse- 
quence {zlk'Sk}, we obtain 

J(u*)>\\y(T)-yd\\ln, 

hence, z is an optimal process.  Finally, Lemma 4.1 in OPIAL (1967) ensures weak 
convergence of both {zl's} and {zhS} to z G S.     D 
• The case of unbounded set U^ 
Now, we formulate convergence results for the case of an unbounded set Uad and 
G = Y. Hereby solvability of Problem (P) is assumed. Let us choose 

Co > \\y*{T) - VdWon,   Pi,s-i > o. 
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Let 

(4.41) u^1 £{ue Uad  :   ||u - u*||0,g < ft,._i} 

be arbitrarily fixed, where z* = (y*,u*) is an optimal process. Suppose that the 
points (yhS,uhS) and (yl's,ul's) are defined by (3.1) and (3.3) with this ul,s~~l. 

Lemma 4.5. Let the sequences {r^}, {e,}, {xi} be chosen according to the RP-method 
and v £ (0, \) be an arbitrary number. Then there exists a constant d(u), independent 

from i, s > 1, {r^}, {e^}, {xi} and ul's~l in (4:A1), such that 

(4.42) Ji(y*,u*) ~ Ji (f, ö'-") < d(u) (co + Pi^f rY2v. 

Theorem 4.2. Let u° E Uad, zlfi = (Tu°,u°). With px > \\zlfi - z*\\ the sequence 
{pi} let be defined recursively by 

(4.43) pi+1 =/H + . \ —^ (co + Pi) n'     + V3—. 
\      Xi Xi 

Moreover, assume that the controlling parameters in the RP-method satisfy the con- 
ditions (A35) and, for each i, let 

(4.44)      i- (M(I,) (C0 + Pif ^ - U - ^X) + ^ < 0,   ft > X 
^Pi   \ Xi \ Xi/     I Xi Xi 

Then, applying the RP-method to Problem (P) with G = Y, one gets s(i) < oo for 
each i, and {uhS}, {y%'s} converge weakly in L2(Q), Y toü,y respectively, where (y, u) 
is an optimal process for Problem (P). 

Note that, due to (4.35) and Lemma 2.2.2 in POLYAK (1987), the sequence {pt} is 
convergent. 
The conditions of the Theorems 4.1 and 4.2 permit a slow change of the controlling 
parameters e^r*, and Xi '■ For instance, it is possible to take 

0 < X < Xi < 2  and r» = q\; e* = q\  with arbitrary qi, q% G (0,1), 

and then to choose ft according to (4.36) or (4.43), (4.44). However, the calculation 
of d(v) or d(v) may be difficult. 
There are no principal difficulties to extend this consideration to other objective 
functions of the form J(u) = \\Cyu — yd\\n, where H is a Hilbert space (on Q, Q or 
E), CeC{Y,H) mdyden. 
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1. Introduction 

Let fl be a bounded open domain of class C4 in Mn. We shall denote by v the 
outward unit normal vector to its boundary T. Given two real numbers a and b, 
consider the following system: 

u" — Aui + bii2 = /1    in lx(l, 
u2' + A2u2 + CLUI - = /2    in lx(], 
«1 = «2 = Aw2 = 0   on ix r, 
«i(0) = Mio    and «i(0) = «ii    in ft, 

«2(0) = u20   and «2(0) = W21    in ft. 

(1.1) 

One can prove by standard methods that for any given functions /1 G L}oc(^', £2(ft)), 
/2 G L}0Jß.\H-l(Q)), and initial data 

(«io, tin,U20,«21) G Hl{ti) x L2(ft) x Hl{ü) x H~\n), 

The first author is grateful to the organisers of the conference for their invitation and to the 
INRIA Lorraine (Projet Numath) for supporting his travel expenses. 

The third author is grateful to the organisers of the conference for their invitation. He was 
supported by DGICYT (Spain) (PB93-1203) and the European Union (CHRX-CT94-0471). 
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this problem has a unique weak solution satisfying 

«i G C(R; H%(Sl)) n C\R; L2(ft)) 

and 

u2 e C(K; ^(ft)) n ^(R; tf^ft)). 

We define the imimZ energy of the solutions by the formula 

Eo = \\uio\\2Hi(n) + llwnlli2(n) + llu2o||ffi(n) + llu2i||#-i(fi)- 

Let us first assume that the system (1.1) is uncoupled, i.e. a = b = 0. Then it 
follows from some results of [11], [12] (p. 44, theoreme 4.1, p. 287, theoreme 4.1) that 
for every bounded interval I containing 0 the solutions of (1.1) satisfy the estimates 

(1.2) yy(3„ui)2+(0„U2)2drdt < Ci£o+Ci||/i||l2(7;L2(n))+ci||/2||£2(/.tf-1(n)) 

with a constant cY. Here and in the sequel all constants are assumed to be independent 
of the particular choice of the initial data. 

Now fix two open subsets Tx, Y2 of V and a positive number T0 such that for any 
bounded intervals Iu I2 of length |/i| > T0 and \I2\ > 0, in case a = b = 0 and 
fx = f2 = 0 the solutions of (1.1) also satisfy the inverse inequalities 

(1.3) E0<c2J J {duUl)
2 dTdt + Ci^J^ {dvu2f dT dt 

with a suitable constant c2. 
The purpose of this paper is to show that then analogous estimates hold for the 

coupled system, too, at least for almost all choices of the coupling parameters a and b. 

Remarks. According to earlier results of Lions, Zuazua and Komornik [11], [12] (p. 
55, theoreme 5.1, p. 296, theoreme 4.3), [13] (pp. 474-478), [5] (p. 82, theorem 6.11) 
on the wave equation and on Petrovsky systems, the estimates (1.3) are satisfied for 
example if there exists an open ball B(xx; Ri) containing Ü and a point x2 <E E™ such 
that 

(x — xi) ■ v(x) < 0   on   T — Ti, 

(x - x2) ■ v(x) < 0   on   r - r2, 

and if the lengths of h, I2 satisfy |ii| > 2RX and \I2\ > 0. Let us emphasize the fact 
that I2 can be arbitrarily small: this is due to the infinite propagation speed for the 
Petrovsky system. 

If ft is of class C°°, then much weaker sufficient conditions were obtained by Bardos, 
Lebeau and Rauch [1], [2], [10]: every ray of geometric optics in ft meets r: x h at 
some nondiffractive point, and there exists a bounded interval I2, possibly longer than 
I2, such that every ray of geometric optics in ft meets T2 x I'2 at some nondiffractive 
point. Note again that there is no assumption on the length of I2: it can be arbitrarily 
small. 

See also Burq [3] for an extension of the results of [1] and [2] to the case where ft 
is only of class C3. 

Our main result is the 
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Theorem 1.1. (a) Given two real numbers a, b arbitrarily and a bounded interval I 
containing 0, in case f\ = f2 = 0 the solutions of (1.1) satisfy the estimates 

(1.4) j I {dvUlf + {dvu2f oT dt < c3E0 

with some constant cz. 
(b) For almost all choices of the pair (a, b) G M2

; if h, I2 are two bounded intervals 
satisfying \Ii\ > 2Ri and \I2\ > 0, then in case f\ = f2 = 0 the solutions of (1.1) 
satisfy the estimates 

(1.5) E0<Ci f j {dvUxf oT dt + Ci f   f {duu2)
2 dT dt 

with a suitable constant C4. 

Remark. In the special case where Q, is a ball, theorem 1.1 was proved earlier in [7], 
[8] by a direct computation (leading to explicit constants). The proof given below is 
different: it is based on a compactness-uniqueness method introduced in [13]. While 
it is indirect and so the constants are not explicit, it works for all sufficiently regular 
bounded domains. 

Applying the duality method from [4] or the Hilbert Uniqueness Method from 
[11], [12] one can deduce from theorem 1.1 an exact boundary controllability result 
concerning the system 

(1.6) 

y'l - Aj/i + ay2 = 0   in   (0,T)xfi, 

yl + A2y2 + bVl = 0   in    (O.TjxQ, 

j/i= vi    on    (0,T)xr, 
2/2=0 and Ay2 = v2    on    (0, T) x T, 

2/i(0) = yio    and   y[{0) = yn    in   Ü, 

.2/2(0) = y20   and   y'2(0) = y2X    in   tt. 

Let us introduce for brevity the Hilbert space 

H = L2{ü) x H~\tt) x H^(fl) x H-^n). 

Theorem 1.2. Fix positive numbers 0 < Tj < T2 < T such that T > T0, and let Ti, T2 

be as above. For almost all pairs (a, b) G M2 the problem (1.6) is exactly controllable 
in the following sense: Given 

Ü/10,2/ii, 2/20,2/21) e H    and   (z10, zn, z20, z21) G H 

arbitrarily, there exist control functions vi,v2 G L2(0, T;L2(F)) such thatv\ vanishes 
outside o/(0,T) x Ti, v2 vanishes outside of (Ti,T2) x Y2, and the solution of (1.6) 
satisfies 

yi{T) = zW:    y[(T) = zn    and   y2(T) = z20,    y'2(T) = z2l    into. 
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Next, applying another general method developed in [6], one can deduce from 
theorem 1.1 a uniform boundary stabilization result concerning the system 

(1.7) 

y'l - Aj/i + ay2 = 0   in    (0, oo) x ft, 
y2' + A2y2 + by! = 0   in    (0, oo) x ft, 
yi = Vi    on    (0, oo) x T, 

2/2 = 0 and Ay2 = v2   on    (0, oo) x T, 

2/i(0)=2/io    and   y[(0) = yn    in   ft, 
.2/2(0) = 2/20    and   y'2{0) = 2/21    in   ft. 

Theorem 1.3. Fix an (arbitrarily large) positive number u, and let r\, F2 be as above. 
For almost all pairs (a, b) G R2 there exist two bounded linear maps 

P:H^L2{Ü)    and   Q : H -> H^(Q) 

and a positive constant M such that, setting 

V! = dl/P{y1,y
,

1,y2,y2)    and   v2 = dvQ(y1,y[,y2,y2) 

the problem (1.7) is well-posed for all 

(2/10,2/11,2/20,2/21) e H, 

and its solutions satisfy the estimates 

ll(2/i,2/i,2/2,2/2)WllH < Me-w*||(2/io,2/n,2/20,2/2i)||H 

for all t > 0. 

Since both theorems 1.2 and 1.3 can be obtained from theorem 1.1 in a standard 
way, we shall only prove theorem 1.1 below. 

2. Proof of Theorem 1.1 

First we prove the inequality (1.4). Applying (1.2) with fx = -bu2 and f2 = -aux 

we obtain the estimate 

II^Wl||l2(7;I,2(r))   +   \\d„U2\\2L2{I.L2{r))   <  C[E0 +   \\u2\\lHl.L2{n))  +   ||Ul||£l(J;tf-l(n)) 

By the well-posedness of the problem (1.1) we have 

\\ul\\h(I;H^(n)) + llu2|lz,i(j;ffi(fi)) < CE0 

and therefore 

II^Wl||l2(7;L2(r))  +   \\d„U2\\2L2{I.L2ir))   <  CEQ, 

as stated. 
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Turning to the proof of the inequality (1.5), let us write the solution u of (1.1) as 
u = v + w where v and w are solutions of the following two problems: 

v" - Ai>i = -bu2    in   lx(l, 

v2 + A2v2 = —aui    in   IxQ, 

Vl =v2 = Av2 = 0   on   IxF, 

Vl(0) = v[(0) = v2(0) = v'2(0) = 0   in   Q, 

(2.1) 

and 

(2.2) 

w Aw, uj — i_itüi = 0   in   K x f2, 

w2' + A2w2 =0   in   lx(1, 

wi = w2 = Aw2 = 0   on   KxT, 

wi(0)=«io    and   w[(0) = Un    in 

w2(0) = «20    and   w2(Q) = u21    in 

Applying the estimates (1.3) to the uncoupled system (2.2) we obtain the inequality 

l|2 ,   „no „„  ||2 

Ü. 

whence 

(2.3) 

with 

E0 < cll^WiH^^.^^)) +c||ö^2|L2(72.L2(r2)), 

EQ < c||ö1/Ui|||a(/i;La(ri)) + c\\dvu2\\l2{h.L2(T2)) + cR 

R - ||9^i||L2(/i;L2(ri)) + llö^ll^/^^)). 

Next applying the estimates (1.2) to the system (2.1) with a bounded interval I 
containing 0 , I\ and I2, we obtain the inequality 

R < c||u2||z,i(/;z,2(n)) + c||ui||x,i(7;H-i(n))- 

Using the well-posedness of problem (1.1) and the compactness of the embeddings 
HQ(Q) C L2(Q.) and HQ(Q) C H~1(fl), this implies that R is compact with respect 
toE0. 

Due to this compactness we can apply a method developed in [13] for the proof of 
the inverse inequality (1.5). Using (2.3) first we reduce our problem to the following 
uniqueness property: if a solution w of (2.2) satisfies dvwi = 0 on Ti x I\ and dvw2 = 0 
on r2 x I2, then in fact all initial data vanish and therefore wi, w2 vanish identically. 
Next, proceeding always as in [13], we reduce this to the following simpler uniqueness 
property: if for some functions w\, w2 G HQ (fi) and for some complex number A we 
have 

(2.4) 

and if 

(2.5) 

-Aw. i + bw2 = Xwi in n, 
A2w2 + awi = \w2 in n, 
wl = w2 = Aw 2=0 on T 

dvwi = 0   on Tx, 
dvw2 = 0   on r2, 

then in fact w\ and w2 vanish identically in Q. 
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Now we shall prove that this last uniqueness property holds for almost all choices 
of the pair (a, b). Let us fix an orthonormal basis zuz2,... in L2(Q), consisting of 
eigenfunctions of —A in HQ(Q): 

-Azn = jnzn   in    Q, 

zn = 0   on   T, 

0 < 7i < 72 < • • • , 

For every pair of integers (k, I) with ^k ¥= 7h set 

Afc,/ = 
7fe - 7? 

lk + ll-li- if 
and consider the countable set 

C:={-(7fc
2-7/b)2   :  k = l,2,...}U{^k-XKl)(jl-Xk,i)   :  7* ^ 7l}- 

Since the set {(o,6) 6l2 : a& G C} is the countable union of real analytic curves 
in K2, we have ab £ C for almost all pairs (a,b) G R2. Henceforth we assume that 
ab£C and we shall prove the above mentioned uniqueness property. 

First we show that every eigenvector W = (wy, w2) of (2.4) has the form W = ßz 
for some ß G C2 and for some nonzero eigenfunction of -A in HQ(Q): 

(—Az = 7Z   in   Q, 

For this first we seek eigenvectors of the form W = ßzk for every fixed k > 1. 
Substituting into (2.4) we obtain for ß = (ßi,ß2) the linear system 

f(lk-X)ßi + bß2 = 0, 
at ■ßi + ill - A)Ä = 0. 

Since by our assumption ab =£ -(7fc - 7fc)2 its determinant has two different roots 
A, it follows that the problem (2.4) has two linearly independent eigenvectors of the 
form W2fc_i = ß2k-iZk and W2k = ß2kZk- 

Denoting by Z the linear hull of zx, z2,..., it follows that W±,W2, ... span ZxZ, 
which is dense in L2(fi) x L2(fi). We have thus found a complete linearly independent 
sequence of eigenvectors of the problem (2.4). It can be shown that this sequence is 
in fact a Riesz basis, see [9]. 

Let us denote by Ai, A2, ... the eigenvalues associated with Wi, W2, ... . If 
they are pairwise distinct, then the problem (2.4) has no other eigenvectors than the 
multiples of the vectors Wk. If some of these eigenvalues coincide, then all linear 
combinations of the corresponding Wks are also eigenvectors of (2.4) with the same 
eigenvalue. Now it follows from our assumptions on ab that Xk = A; implies jk = 7z> 
and therefore every eigenvector W = (u>i,w2) of (2.4) has the form W = ßz for 
some ß G C2 and for some nonzero function satisfying (2.6). Indeed, if 7*, ^ 7 but 
\k = A; =: A, then A solves both characteristic equations 

(7fc-A)(72-A)-a& = 0    and    (7 - A)(7f - A) - ab = 0. 
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Hence an easy computation gives that A = X^i, and therefore ab £ C, contrary to 
our assumptions. 

We have thus shown that under the assumption ab £ C every eigenvector W = 
(wijWz) of (2.4) has the form [ß\Z,ßiz) for some complex numbers ß\, ßi and for 
some nonzero function satisfying (2.6). 

Now using (2.5) and applying Carleman's uniqueness theorem we conclude that 
ßiz = ß2z = 0 in Q, i.e. W = 0 in Ü, as stated. 

Remark. Note that the proof of the theorem gives more than stated: the set of 
exceptional matrixes (ay) is not only of measure zero, but a union of countably 
many real analytic curves. 
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On Dynamic Domain Decomposition of Controlled 
Networks of Elastic Strings and Joint-Masses 
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ABSTRACT. We consider a planar graph representative of the reference configuration of a 
network of elastic prestretched strings coupled at the vertices of that graph. Some or all 
of the vertices may carry a point mass, and at those nodes dry friction on the plane may 
occur. We briefly describe the model and some results on well-posedness and control of such 
systems obtained in the literature. We then introduce a dynamic domain decomposition 
based on a Steklov-Poincare-type operator. The analysis is given for the time-domain and 
the frequency-domain. Optimal control and problems of exact controllability are formulated 
and investigated in terms of the decoupling procedure. 

1991 Mathematics Subject Classification.   93C20, 93C80, 93B05, 65N55 

Key words and phrases. Dynamic domain decomposition, strings, networks, joint masses, 
dry friction, Steklov-Poincare-operators for networks, differential-delay systems, optimal 
control, controllability. 

1. Introduction 

We consider a network of dynamic elastic strings as in [10], [9], [13]. Let G = 
(V, E) be a planar connected graph with vertices V, flV = nv and edges E, $E = ne. 
Each edge is representative of a (possibly prestrechted) linear string in its reference 
configuration. We label nodes vj by capital letters and edges by lower case letters. 
At a typical node vj we have d(vj) incident edges, the indices of which we label 
i G Sj. To each i G £j we assign eu := —1 if the edge i starts at Vj and etj := 1 
else.   We denote by x,j the number U if etj = 1,  0 if eu = — 1.   We introduce 

o o 

V-= {v G V\d(v) > 1}, dV = V\ V as multiple nodes and simple nodes, respectively. 
Let 

Ti{x,t) := Ui(x,t)ei + Wi(x,t)ef 

denote the deformation of the i-th string, where Uj, IüJ, e*, ej- denote the longitudinal, 
vertical displacement, and the unit vectors along the undeflected centerline and its 
orthogonal complement, respectively. 

We signify nodes where Dirichlet conditions hold by VD; for simplicity of notation 
we impose VD C dV. Correspondingly, Neumann-nodes are denoted by Vjv C dV. 
Let Ki denote the local stiffness matrix. Then we have the systems of equations 
governing the motion of the entire network. 

(1.1) h = KiT'l, i = l:ne,Xi€ (0,y, t G (0,T) 

(1.2) rd(xdD) = 0, vD G VD, d G £D, t G (0,T) 

Preceding Page Blank 
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(1.3) nixij) = rjixjj), Mi,j G £J,VJ GV 

(1.4) £ eijK,^(xij) = -mjhixij) + fj, vj GV UVN, t G (0,T) 

(1.5) u{xi,0) = ri0(xi), ri(xi,0) = rnfa), xt G (0,k), i = 1 : ne . 

While (1.1) is the obvious wave equation for the i-th string with homogeneous Dirich- 
let conditions (1.2), equation (1.3) gives the continuity of displacements accross the 
joint vj. Equation (1.4) is the balance of forces at the joint Vj including the possi- 
bility of an additional mass mj and an external force fj there. Position (1.5) finally 
represents the initial conditions. 

System (1.1)—(1.5) has been shown to be wellposed in 

H := fli2(0,y, V := {r e ft #*((),*i)|r satisfies (1.2), (1.3)} 

with the typical setup V CC H CC V*, and rrij = 0 Vj. We note that all spaces 
1/2, H1 etc. appearing in this paper are to be considered as spaces of functions into 
the plane. 

Theorem 1.1. [9] Let mj = 0MJ, then 

V(r0,ri)eVxH, fe f[L2(0,T)3\r: 

r e C(0, T, V) n C\Q, T, H) n (72(0, T, V*) , 

r satisfying (l.\)-(\.b) in a natural weak sense. 

Remark 1.2. More can be said in terms of regularity, when masses at joints are 
present. See Section 3 below. In case of nonhomogeneous Dirichlet-data, wellposed- 
ness for the system with masses mj^O has been obtained in [15]. 

Remark 1.3. Problems of exact/approximate controllability have been discussed in 
detail in [9] where also 3-d-networks have been considered. See also [9], [10]. 

Remark 1.4. The balance of forces at multiple nodes (1A) can be extended in various 
ways, in order to account for nonlinear phenomena as e.g. dry friction on the plane 
or elastic and rigid obstacles, rigid bars between joints eel. We do not have sufficient 
space to discuss these models here in detail. To illustrate the possibility of treating 
such phenomena in the context of the subsequent domain decomposition, we provide 
a model of dry friction. 

(1.6) X) eijKrifaj) + mMxij) e -ßjd\fi(xu)\, vj eV UVN, t G (0,T). 
ie£j 

In a more refined model we have 

(1.7) 5Z eiJKir'i(xij) ='■ FJ = -mJfi(xij) ~ PJPJ> 
ie£j 

where 

\i i\XiJ)\ 
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Pj®=tWf*\>   ^e[-§'§]'   tf'^'H0'   F'W*° 

pj(t) = 0    e/se, 

and naj, ßj are adhesive and shear frictional moduli. See Panagiotopoulos [12] for 
dry friction models and results on well-posedness for single-element systems. The 
subsequent analysis will show that it is possible to reduce the discontinuous part of 
the PDE-problem above to a finite dimensional one. 

2. A dynamic Steklov-Poincare-Operator for networks 

We first consider the local Dirichlet problems for each individual edge along et 

(2.1) <Pi = Kitf,        (<U)x(0,T) 

(2.2) ipi(xij) = Xj + ria{xu), (fi(li - Xu) = XM + ri0(li - xtJ), (0, T) 

(2.3) tpi(x,0) = ri0(x),ipi(x,0) = rn(x), (0,k) . 

Obviously, </Jj can be written as a superposition 

(2.4) ipi(x,t,ri0,m, Xj, AM) = ^i{x,t, 0,0, Xj, XM) + rji(x,*>rio, ?u, 0,0) . 

Lemma 2.1. Let (r0)ri) G V x H, Xj,XM G H^(0,T) (ie- X
J>

X
M G {^(O.T)! 

A(0) = 0). Then for each i there exists a unique weak solution ifi to (2.1)-(2A) 
satisfying 

weC(fl,r,F1(o,!i))nc1(o1T,i2(o,ij)) . 

Proof. The proof is standard. Nevertheless, we need a precise representation any- 
way. In particular, we will use ipi{x, t, 0,0, Xj, XM) below. r]i(x, t, ri0,rn, 0,0) can be 
constructed, say, by a d'Alembert-Ansatz. We focus on fa, and use a Fourier-Ansatz. 

Ki = ki((l--)I + -eiej)  , 
V        Si        si      ) 

where s» > 1 represents the amount of stretching. We have ipi =: ip\^i + ipi^i, hence 
(2.1)-(2.4) decouples into 

(2.5) $   =  pM)", C   =  Q
2
MY 

(2.6) 4(xu)   =   Xlj, Mfaj)   =   Xvj 
(2.7) 4(k - xu)   =   Xl

M, rSi-xu)   =   AM, 
plus zero initial conditions, where pf = fc$, <jf = fcj(l - 1/s*). Hence, solving the 
in-plane problem (2.1)-(2.4) comes down to solving scalar problems (2.5)-(2.7). We 
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express ip^ipi as follows 

z\(x,t)   =   T(li-xij + €ijx)Xlj(t) + Y(xij~eijx)Xl
M(t) 

n H 

zvi{x, t)   =   -{h- xu + €ijx)Xvj(t) + -(zu - eux)\v
M(t) . 

(2.8) y\ = v\{v\)"--A, iff = ??(#)"-*7 
(2.9) yl(Xij)   =   0 = yl

i(li-xiJ), VK^J) = 0 = vUh - xu) 
+ zero   initial   conditions. 

By standard calculations we obtain, with fj-j := Ef1 

OO 7 pt 

+{lf2^4cos(f{li~xu))*Us)}ds ■ (iT^i X . 

If we integrate (2.10) by parts and approximate H&_(0,T) by H$_(0,T), the asymp- 
totic behaviour of the Fourier coefficients implies that ipl have the properties required. 
The same obviously holds for ip*.   D 

Lemma 2.2. Let ipi i = 1,... ,ne be as in Lemma 2.1. Then ipi(x, t) = n(x,t), where 
rii = l,... ,ne solve ('l.l^-fl.öj if and only if 

(2.11) E CijKufttxij) + mjXj = fj       V J GV UVN . 
ie£j 

Proof. If <pi = n then (2.11) is obvious. Conversely, since Xj(t) = <Pi(xij,t), condi- 
tion (2.11) is just (1.4) with ipi. By construction 

<Pi{xij) = ri0(xij) + Xj = rk0(xkJ) + Xj = (pk{xkJ) , 

since r0 &V. For Dirichlet nodes vD we have XD = 0. The argument is applied to 
strong solutions and then to mild solutions.    D 

We return to (2.10) and, consequently, require A G H$_ for the time being.  We 
obtain 

OO o    OO 7 »I 

m*u,t)    =   eujE^JnM^)1/\t-s){Xl
J(s)-(-iyxUs)}ds 

9      oo     7       Pi 

=   Uj-f- E - / sin(/4)1/2(s) { Kit -s)- (-lfXl
M(t - a)} 

2    °°   /.   ™i   Ak+\)ii/vi 

=■   ^r-E^E/,, G^ds, 
HPi fc—o     J k=0   k^i/Pi 
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where mt = argminfc{(fc + l)k/pi > t} and the integrand is put to zero for s G 
[t,(mt + l)li/pi]. Hence, 

O    oo    ;    mt      i./Pi 

(2.12) (yl)'(xu, t) = eu— E ^ E /       Gy(r + kk/Pi)dr . 

Now, 

* (T Hs)H (^+*0-<-'>"■* (xO- 
and hence (2.12) gives 

(2.13) Ü,<)'(W)   =   ^EiE(-l)4i|      Bin(epr). 
W j=l "J fc=o u \    H       / 

• {\lj(t -T- kh/pi) - (-l)JXl
M(t -T- kk/Pi)} dT . 

Furthermore 

f[h/Pi
tSin(p-f>t)dt = -±(-iy±, 

k Jo V   k    J irj pi 

^[k/lH(l-^t).Sm(^dt = ^, 
k JO \ h   J V    k      1 7TJ 

and hence (2.13) can be written as 

(yi)(xij,t) = -tu E   /.    E  (-H    ■ 
Pi fc=o     Jü        1=1   I   v h ' 

k even J 

rh/Pi /      Pi \   .   (Pi-nj\,,(2pi\
ll2 .   piirj 

•Äz
J(t-T-A;Zi/pi) + 

1/2 .   [PiKJ sm 

■Xl
M{t-T-kli/pi) \dr 

k odd 

.(|i)"!
sin(^T)ä',(t-r-tyR)- 

,, ,2pA1/2   .    [Pi-Kj 
dt   ——       sm 

■Xl
M{t-T-kli/pi)}dT 



196 Dynamic Domain Decomposition of Networks 

i        K/21 
=    -<*J   E   {Xlj{t-2{k + l)li/pi) + Xlj{t-2kli/pi) 

+Pi/k(\lj{t - 2(fc + 1)^M) - Xlj(t - 2kli/Pi)) } 
1 |"(mt-l)/21 

P» fc=o 
+Pi/^(A^(t - (2/c + 3)k/Pi) - \l

M{t - (2k + i)li/Pi)) } 

i \(mt-2)/2] 1 

(?/<)'( W)   =   -eu{Xlj(t)+2     E     Xl
J(t-2(k + l)li/Pi}-TeiJXl

J(t) 
Pi fc=0 H 

1     r r(mt-i)/2i 1    ! 

Ä      1       fc=o J      '< 

Now, (^)'(xa,i) = eiJTXlj{t) - Y~Xl
M(t), and hence 

H H 

-j me 

tyb'ixij, t) =eiJ- { Xlj(t) + 2 £ Xlj{t - 2(k + l)k/Pi) 
Pi k—O 

(2.14) 
-2j2^M(t-(2k + l)k/Pi)} , 

fc=0 

with me, m0, denoting the even and odd boundary for the index k obtained from the 
previous formula. 

A similar expression holds for the vertical component with I replaced with v. With 
the definitions PtX := piX^i + q^e^, (DJX)(t) :=PiXl{t-Tli/pi)ei+qiX

v(t-Tli/qi)ei 
we can write (1.4) with tpt replacing ti as 

E« ^) + 2EE(A2(w)A/)W 
ie£j    / fc=o ie£j 

mo 

-2E E(A2fc+1AiM)(i) = fj(t) - E euKiv'Ax^t) . 
k=0 ie£j ie£j 

Here viM is adjacent to vj and belongs to the incident edge i. Note that (2.15) 
also applies to a simple Neumann-node vj where d(vj) = 1. We may define A := 
(Aj, AJV, ... )T and 

S(A) ■= ( E eijKrfi (*". *. °> °>A^ A^) + mÄ/W) 
\*efJ / J=1:N 

(2.i5)     s: n#o-(o,r) -^ ni2(°-T). 

D(5) = {A e n#o-(0, T)\Xj e F0
2-(0,T)  for m^O}. 
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Then S can be interpreted as a dynamic Steklov-Poincare-Operator for the network. 
Indeed, for time independent problems, or those obtained by some integral trans- 
formation, S is identical with a Steklov-Poincare operator. However, even in the 
static case, such operators, in the case of networks of any dimension, do not seem 
to have received attention yet. The case of coupled membranes is the subject of 
current research. See Lagnese [8], where a domain decomposition is used implicitly. 
Its importance is due to the following theorem 

Theorem 2.3. Given {r0,rx) eVxH, f G UjL2(0,T). If A solves 5(A) = F with 

F= \fj-J2 tijKtf'iixiJ, t, no, ra, 0,0) j 
V ie£J J J=1:N 

then the corresponding local solutions ipi of Lemma 2.1 constitute a solution of (1.1)- 
(1.5) according to Lemma 2.2. 

The entire calculus leading to (2.15) was done to give an explicit representation of 
S defined by (2.15). 

Therefore, in order to solve problem (1.1)—(1.5), we have to solve the differential- 
delay system of second order in time (2.15) together with trivial initial histories 
Aj(—s) = 0 Vs > 0 VJ 6 K Once that is done step by step, according to the 
individual delays U/pu k/qu the solutions tpi can be computed in parallel. Also, each 
individual problem can be solved in parallel using waveform relaxation techniques, 
see Burrage [1]. 

Remark 2.4. If dry friction occurs at a joint vj as explained in Remark 1.4, one has 
to either add a maximal monotone operator to S, or use the notation of variational 
inequalities in order to extend existence and uniqueness to the system with dry fric- 
tion. In particular, using the method of steps, one obtains a sequence of ordinary 
differential equations with discontinuous forcing term. The latter systems can then 
be treated step-by-step in the framework of DAE's (differential-algebraic equations) of 
index 2. We have implemented this strategy using RADA U5 of Hairer and Wanner 
(see [4] as a base reference) and projection methods. We have applied this also to 
beam networks with rotational dry friction between "pin-joints". We refer also to the 
work of Glowinski et.al. [3] (for matrix problems), where the time is first discretized in 
order to obtain an "elliptic" problem together with a projection accounting for the dry 
friction. To apply their approach to elastic networks, using the domain decomposition 
above, is the subject of current research. 

3. Wellposedness and regularity of solutions 

It is well-known that the solution rji(x, t, ri0, ra, 0,0) of (2.1)-(2.3) has the regular- 
ity 

Vi G C(0, T, H\0, li)) n ^(0, T, L2(0, h)) . 

for r0i G Hl(0, k), ru G L2(0, k). In fact, one verifies that 

^(a;ij)-,rio,ril)0)0)eL2(0,T). 



198 Dynamic Domain Decomposition of Networks 

Lemma 3.1. Given (ro.rj) £ V x H, fj£ L2(0,T) V J &V UVN, there exists a 
unique solution of (2.\^>) with Xj(-s) = 0 V s > 0, J G V. The regularity of Xj(t) 
depends on the presence of a mass mj at node vj: 

i)       if mj = 0,   then Xj G H\0, T), Aj(0) = 0 

ii)       if mj ^ 0,   then Xj G #2(0, T), Aj(0) = Xj(0) = 0 . 

Proof. The right hand side of (2.15) is in L2(0,T). Let ax = mm{UlPh U/Qi), then 

solve (2.15) on (0, on) uniquely for Xj. Note that because of Aj(-s) = 0 V s > 0, the 
sums in (2.15) are empty. Now Xj{t) satisfies i), ii) for mj = 0, mj ± 0, respectively. 
We do this for all vertices and obtain A on (0, aj. By the same procedure, we obtain 
the solution A on (0, T) if we use the solutions obtained in the previous step to update 
the history part in (2.15). This is the classical method of steps for differential delay 
systems, see [1].    D 

Corollary 3.2. It is immediate from Lemma 3.1 that waves passing a node with nonzero 
mass mj or waves generated at such a node by applying forces fj, have one more de- 
gree of regularity in the edge incident at vj. 

Theorem 3.3. Let (ro,^) eV x H, fj G L2(0,T) V J £V UVN. Then there exists a 
unique mild solution r of f l.lj-fl.5), satisfying 

reC(Q,T,V)nCl{Q,T,H) . 

Proof. The first part is obvious from Lemma 3.1 and Theorem 2.3. The second part 
follows from Corollary 3.2.   D 

Remark 3.4. We illustrate the smoothing-property of the joint-masses by an exem- 
plaric situation.    There are many interesting features concerning regularity issues 
when masses are present at joints.  We don't have sufficient space to go into details. 
See, however,  Wille and Baker [16], for the propagation of singularities in DDEs 
and [5], [15] for two-span strings. 
If ri0, ra ^ 0 on a set I of edges and ri0 = ra = 0 on E\I and mj =/= 0   Vvj G I 
such that   adj(vj) n (E\I) ^ 0.   Then on E\I the restrictions n of r satisfy n G 
C(0, T, H\0, h)) n C\Q, T, Hl(0, h) n C2(0, T, L2(0, h). 
Obviously, Theorem 3.3 extends Theorem 1.1 to the case with mj ^ 0. 

4. A frequency domain representation 

We switch to a nodal description of (1.1)-(1.5) as in [11]. The edge connecting the 
adjacent nodes vj,vM is labeled by JM (i.e. n <-> rJM, £j <-> £j = {M\vM *-> vj} 
etc.).   Denote k)M := l/pJM,  kjM := 1/QJM-   DJM ■=   diag(j3JM, QJM),  kJM ■= 

diag(^,^), RJM ■= ( _ZlJZ cosS )• Where e- = («»^^^)T. 
6JM being the angle between et and (1,0) in the reference frame. The notation 
rJM implies that oM(0) relates to ri(xu). For the sake of convenience, we take 
each edge twice, namely rJM,rMj, thereby we obtain a multi-digraph.   Of course, 
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TJM{X) = rMj{ljM-x), implying uJM(x) = -UMJ(IJM-X), WJM(X) = -wMJ(ljM- 
x). Consider the Laplace-transform of (1.1)—(1.5): 

Cf(s):=       e-stf(t)dt = f(s) 
Jo 

(4.1) s2fJM{x, s) - srJM{x, 0) - fJM(x, 0) = KjMr"M(x, s) 

(4.2) fDM(0, s) = 0, M e SD, D e VD 

(4.3) fJM(0, s) = fJN(0, s) = Xj(s) \/M,Ne£j 

(4.4) - £ KJMf'JM(0, s) + mjs2X(s) - smjA(O) - mjA(O) = fj(s) 
Me£j 

(4.5) rJM(x, 0) = r°M(*), ^(a;, 0) = rlJM{x)    J GV UVN . 

Again TJM = UJM^JM + wJMejM, hence (4.3), (4.4) translate to 

(4-6) ( I™ ) (0, a) = RJM-JK ( %K
K ) (0, s) = RJMXj(s) 

(4.7) mjs2\(s) -  £ Ä-JM^JM f ,t^ ) (M = F^ > 

with Fj{s) := fj(s) + smj\(0)+mj\(0). Put aJM := (ajM>aJM)T> rfJM = 
idJM,djM)T,then 

(4.8) f ^ j (x, s)   =   esfc^ (aJM(s) + DJM±- £ e"sfc—6JM(S) r) dr 

+e-skJMX ^djM^s) _ DjM J_ £ esk^TbJM(s, T) dr 

(4.9) (|^)(M   =   a,M(s)+dJM(S), 

^JM      (0, s)   =   skjM{aJM{s) - dJM(s)) = -RJMAj(s) . 

There are at least two possibilities to proceed further. One is to derive scattering 
relations based on dJM (departure) and aJM (arrival) as in [11], [10]. Based on 
this scattering analysis, we have been able to develop nonclassical control strategies, 
localization of energy-fluxes, spectral properties and much more. Here we focus on the 
relation between the data (fj,ri0,rn) and the Aj's, as being proposed in Section 2. 
Therefore, the upcoming analysis is suitable for parallelization. We use (4.8) and 
conclude, with GJM{IJM,S) := DJM± JQ

JM
 e~skjMTbJM(s,T) dr, after some calculus, 

aJM{s)   =   -(/ - e-
2*W,M)-i {e-skJMiJMRMJXM(S) 

(4.10) +e-2skJMiJMRjMXj(s) - (/ + e-skjMhM^ G(ljM> s) J 

djM(s)   =   RJM^J(S) - aJM(s) . 
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Equations (4.10) provide an explicit representation of the complex amplitudes of 
arriving and departing waves in forms of the traces Xj, XM at the nodes vj, vM- 

mjs2Xj{s) + s \  J2 R
-JMDJMRJM   XJ{S) 

\ME£J j 

+ 2s( T R-JMDJM(I - e-
2skjMljM)-le-2skjMhMRjM) Xj(s) 

(4.11) \Me£j J 

+ 2s £ R-JMDJM(I ~ e-2sfc^'^)-1e-sfc^/^JRMjAM(s) 
MeSj 

= Fj + 2sJ2 R-JMDjM{I-e-2ak™)-\l + esk™ljM)GjM{ljMs). 
Me£j 

Equation (4.11) when relabeled with edge-indices is just (2.15) in the frequency do- 
main. Note, however, that we cannot use such transform techniques when e.g. dry 
friction is present at joints. As a result, (4.11) appears as an extension of the classi- 
cal Steklov-Poincare-equation to networks, and (2.15) as its pull-back into the time 
domain. See Benamou [2] for a 2-d-problem. 

5. Control problems 

5.1. Minimization of energy in substructures. We go back to (2.15) and integrate 
with respect to time from 0 to t. 

(5.1) mMt) + (£ P) Xj(t) + 2 £ £ (D?k+1)Xj)(t) 
\ie£j    j k=o ie£j 

mo i-t ft 
-2E £(A2fc+1AiM)(i) = / fj(s)ds-J2 €ijKi / Vi(xu,s)ds . 

k=0ie£j Jo i££j ° 

Note that Aj(0) = 0 if m7 ^ 0 and Aj(-s) =0 s > 0. Similar equations hold 
for each node vj. Note, however, that the J-th equation is the only one to contain 
Xj(t), Xj(t) at the actual time t. It is readily seen that one might eliminate the Aj's 
corresponding to nodes without extra masses mj from (2.15),((5.1)). As a result, one 
can reduce the system of equations (5.1) for the indices J to those having mj ^ 0. 
Having solved that latter system one can then use the recurrence relations for all 
those variables XK with mK = 0. This amounts to saying, that we may w.l.o.g. 
consider a reduced system with mj ^ 0 V J. That reduced system can be recast, into 
a standard format as follows. 

i 

(5.2) A(t)   =   AoA^ + ^AjAit-h^ + Bu^+git) 
.7=1 

A(-t)   =   0,    t>0 

with Au B obvious from (5.1). In (5.2) the structure of Bu(t) is again given by 

B0F{t) + YJBjF{t-hj) = Bu{t) 
i=i 
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where Fj(t) = / fj(s) ds. As remarked earlier, dry friction at some joints will result 
Jo 

in a discontinuous "right-hand-side", of a type mentioned in Remark 2.4. Further, 
g(t) is given by the local Dirichlet problems with fixed Dirichlet-data and corre- 
sponding initial conditions. It is important to note that the number I of delays 
increases with the process time. Therefore, if we want to solve (2.15)((5.2)) on a 
time interval (0, T), then we first have to compute I as the largest integer such that 
max(2(l+l)li/pi,2(l + l)li/qi < T i = 1,... ,ne. Then on (0, T) we have a finite de- 
lay problem (5.2). We may, thereby, restrict solutions A of (5.2) with I fixed, obtained 
by semi-group theory, to (0, T) in order to solve our problem, while it is not feasible 
to use these semi-group-solutions beyond T. Keeping this in mind, we can use the 
powerful theory of functional /retarded differential equations and the corresponding 
control theory as surveyed for instance in Kappel [7]. On the numerical side, we can 
either use approximation methods as surveyed als in [7] or the very recent parallel 
approach outlined in Burrage [1]. We do not have sufficient space to dwell on this any 
further. The main purpose of this section is to reformlate the problem of minimizing 
the energy of a specified subsystem, in terms of the nodal variables A. In the edge i 
we have the local "total" energy: 

ES)   ■=   \j^{\fi{x,t)\2 + Kir'i{x,t)-r'i{x,t)}dx 

+^mj\Xj(t)\2 + ^mM\\M{t)\2 := Ei0(t) + Ea(t) 

Using (2.1)-(2.4) and the results of Section 2 we obtain 

—Ei0(t) = tijKi^Xijt) + rj'iixu,t)) ■ \j(t) + eiuKiW^XiM, t) + 7?-(xiM,*)) • XM(t) 

= tijKi^xuJ) ■ Xj(t) + eiMKiiplixiM^) ■ \M{t) 

+ £ijKirfi(xij,t) ■ h{t) + eiMKirfi{xiM,t) ■ Ajw(i) • 

However, by (2.14) we have 

mo 
2(fc+l); 
i ' 

k=0 fc=0 
Kulftxij, t)   =   euiPMt) + 2 E(A2(fc+1)Äj)(i) - 2 ^2(D2k+lXiM)(t)), 

and hence, upon integration, it is seen that Ei(T) is a quadratic functional in 
Aj(£), AM(i) and their histories. In particular, set n = 2-n„, M2 = Rn x L2(-h, 0; M") 
where 0 = h0 < h% < ... < hi =: h. Then, using the notation from (5.2) we can 
define the operator A in M2 by 

D(A)   =   {(/,01)GAf2|01GlT1(-/i)O;Rn)0o = 01(O)} 

3=0 
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see Kappel [7]. Obviously, with z(t) := (z°(t),z1{t))T, 

=o 
z\t,s)   =   (z1)'(t,s),z\t,0) = z0(t),z1(0,s)^0S€[-h,0] 

z\t,s)   =   z°(t + s) 
I 

z° (t)   =   J^A^it-hj) 

Therefore, our system (5.2) can be written in the standard format 

z(t)   =   Az(t) + Bu(t) + git)       t£[0,T] 
2(0)     =     Z0 

We have thus shown, that solving the problem of minimizing the vibrational energy 
on a substructure of an elastic network of strings reduces to a finite-horizon LQR- 
problem for a system of delay differential equations of a simple form with zero initial 
history. As there are no continuous delays involved, one can, in fact, always proceed 
with a step-by-step procedure involving the solution of ODEs only. It is also possible 
to account for the unbounded delay case directly. Then one rewrites the system into 
a system of ordinary Volterra-integrodifferential equations in the Stieltjes-sense with 
monotone, piecewise constant kernels. This setup is more suitable when discussing 
the longtime behaviour of the system, e.g. when considering an infinite horizon LQR- 
problem. 

As a result, by the decomposition method outlined so far 
• we are able to reduce an infinite dimensional - possibly nonlinear - control 

problem to a finite dimensional one, without any kind of approximation 
• we can solve the delay system and its adjoint occuring in the optimality condi- 

tions in parallel using methods from [16] to obtain the optimal nodal positions 
• we can solve the local PDE's on each edge in parallel for given nodal positions. 

The task of putting this program into numerical algorithms is on its way. 

5.2. Controlling the energy flux. The flux of engergy in an edge is given by 
-Kiri(x,t) ■ n(x) and is equal to the energy transported across the section at x 
in the positive erdirection, with respect to a time-unit. Hence, at a node vj, 
the energy transported into the direction of the incident edge is e^Ky^xu^) ■ Xj 
(-KJMr'jM{0,t) ■ Xj{t)). Hence, in order to maximize (or minimize) the energy flux, 
say, along a given forest with roots as sources and sinks as leaves, on could take 
squares of the flux as a cost. The resulting problem would be similar to those of 
Section 5.1. 

Let us instead use the frequency domain approach of Section 4.  There, we have 
shown that 

djM(s) = RJMXJ(S) - ajM(s), 

with aJM{s) given by (4.10), is the complex amplitude of the wave running from 
vj towards vM- The correspondance with the time-domain expression of the flux is 
obvious. Therefore, the problem of controlling the flux of engery comes down to an 
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equality-constrained LSQR-problem or a quadratic programming problem. This ap- 
proach has been discussed in Benamou [2] in the context of minimizing the scattering 
of waves incident at a surface of an obstacle. 

Also, it is possible to consider the problem of exact anihilation of waves - which is 
an analogue of the well-known anti-sound problem. 

We remark that, particularity in the context of beams, where dry friction between 
"pin-joints" becomes relevant, one might consider changing dry frictional parameters 
as variable structure controls. This is an open field of research. 

As is amply demonstrated, there is a wealth of interesting optimal control prob- 
lems which can be reduced in dimension considerably using the proposed domain- 
decomposition. 

5.3. Controllability. Problems of exact controllability and approximate controllabil- 
ity for non collinear 2-d-or 3-d-networks of strings and beams in the absence of masses 
mj have been investigated in Lagnese, Leugering, Schmidt [9]. The case of such net- 
works with additional joint-masses mj remained open. Results in this direction are 
available only for serial strings with such masses. See Schmidt and Wei [14], Wei [15] 
and Hansen, Zuazua [5]. As an exemplaric problem in both papers, a two-span string 
system with point mass in the middle is considered. The comparatively simpler anal- 
ysis in sections 2, 3 makes it clear that, in that examplaric situation with one extreme 
point clamped and the other controlled, the waves originating from the latter input 
source will be smoothened by one degree of regularity while passing the mass in the 
middle. Therefore, rough data in the first string (with one end clampded) cannot be 
compensated for by control inputs at the other extreme. Indeed, for Dirichlet control 
problems in that context, it was shown in [15], [5] that exact controllability holds, if 
more regularity is required in the span which is not directly connected to a controlled 
end, but rather reached by passing a mass. It may appear remarkable then, that 
in the Neumann case (the Dirichlet case can be handled in a similar fashion) a far 
simpler analysis, when compared with [15], [5], yields the same results, even for non 
collinear networks! The argument is quite simple: consider a two-span string system 
with a mass in the middle. For the clamped node there is no component in (2.15) 
and the corresponding A, say AJV, is zero. Let vj be the mid-node with mass mj 
and displacement Xj, while the controlled node is %, where a Neumann control is 
applied. For the sake of simplicity and bevity we take all constants equal to 1. 

Also, for simplicity, let <f>j(t), </>M(*) denote the (sum of) forces at vj,vM caused 

solely by the initial data   '^2,eijKir]'i{xij,t   in (2.15); then (2.15) reads like: 
\ie£ I 

me mo 

mj\j{t) + 2\j(t) + 4 £ Äj(t - 2(fc + 1)) - 2 £ XM(t - (2k + 1)) = <t>j{t) 
fc=0 fc=0 
me mo 

(5.3) \M(t) + 2 £ \M(t - 2{k + 1)) - 2 £ \j(t - (2k + 1)) = fM(t) - <j>M{t) 
k=0 fc=0 

Aj(0) = Aj(0) = AM(0) = 0 . 

Now, given the initial data for r±, r2(l <-> NJ, 2 <-> JM) and zero boundary condition 
at vN, we can compute the solution ri(x, 1), rx(x, 1).  In the time interval [1,3] we 
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then solve the Dirichlet boundary control problem in the usual way, and obtain a 
unique boundary control at vj on [1,3]. This is the \j(t) required on [1,3]. Looking 
closer at (5.3), it appears that Xj(t) given on [1,3] uniquely determines fM on [0,2]. 
Then, the Dirichlet data Aj (i) on [1,2] and the initial data of n, r2 will give a solution 
r2(x,2),f2(x, 2). We take those as initial data, and consider the Dirichlet boundary 
condition given by Xj(t) on [2,3] and 0 on [3,4]. On edge #2 we, therefore, have again 
the problem of exact null controllability on the domain [0,1] x [2,4]. The solution of 
this controllability problem determines fM(t) on [2,4]. 

This principle can be applied also to different physical constants, and using the 
arguments in [5] on p. 1390, to varying stiffness-problems. Moreover, and more 
importantly, we can show exact controllability results for tree-like networks with 
joint-masses, when all leaves are controlled. It is plain that the regularity of initial 
data has to increase by one degree, each time a mass has to be passed while following a 
path to a controlled end. The precise regularity statement is, however, a bit involved 
and admittedly of rather academic interest in real applications. Therefore, if we do 
not insist on sharp regularity requirements for the initial data, we can state the result 
in the following 

Theorem 5.1. Let the initial data be sufficiently smooth. Let G be a tree with the root 
vroot clamped. Let all simple nodes (other than the root) be controlled by L2(0,T)- 
Neumann controls, where T > 2 * dist(vroot, G). Then the correpsonding network of 
elastic strings fl.1-1.5,) with masses at the joints is exactly controllable. 

As was shown in [11], exact controllability of a 4-node star-graph with one node 
clamped and only one other simple node controlled holds for a massless multiple 
joint. Now instead we allow for a mass at the coupling node vj, and consider the 
two uncontrolled strings connected at vj through a mass mj. Assume that one of 
the strings is clamped at, say vN, while the other is free at, say vM- The two strings 
satisfy, in addition to appropriately regular initial conditions, a continuity condition 
at vj, the nodal displacement being Xj. The resulting subsystem is generically exactly 
controllable by an iJ0

2_(0,T)-in-span-control (for H2(0,k) x ff^O.^-initial data). 
Once that Dirichlet-control is identified with Xj(t) on (0,T), the controllability from 
the fourth node, say vc, by a Neumann-control follows as in the case above. Iterating 
this procedure, we can prove exact controllability of e.g. a serially connected (not 
necessarily collinear though) string with one extreme clamped, the other extreme 
controlled in the Neumann-data, and with further uncontrolled strings attached to all 
interior nodes, provided the boundary data of those attached strings are of Neumann- 
type. If we do not attach strings to all interior nodes, controllability (given identical 
elements) will depend on how many nodes (an even or odd number of nodes) are left 
out in a row. A detailed analysis goes beyond the scope of this paper and would have 
to be related to Ho's work [6]. 
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ABSTRACT. We consider a simplified linear hybrid system for the problem of the control 
of noise in a cavity, consisting of two coupled wave equations of dimensions two and one 
respectively. A dissipative term is assumed to act in the one-dimensional equation. We 
prove the existence and the uniqueness of solutions. Each trajectory is proved to converge 
to an equilibrium as t —> co. On the other hand we show that the convergence rate of the 
energy is not exponential. The proof of this result uses a perturbation argument allowing 
to modify the boundary conditions so that separation of variables applies. 
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Key words and phrases. Hyperbolic system, stabilization, decay rate, spectral analysis, 
aeromechanic structure interaction. 

1. Introduction and the mathematical model 

In this paper we study a simplified model for the problem of the active control of 
noise, introduced in [3], consisting of a two-dimensional interior cavity with a flexible 
boundary. The acoustic vibrations of the fluid which fills the cavity are coupled with 
the mechanical vibrations of a string with fixed ends (Dirichlet boundary conditions) 
located on the boundary of the cavity. This constitutes a hybrid system since two 
vibrations of different nature interact. For other examples of hybrid systems, such as 
those coupling strings or beams with rigid bodies, see [14] or [9]. 

Let us describe in more detail the mathematical model we shall study. 
We consider the two-dimensional cavity Q = (0,1) x (0,1) filled with an elastic, 

inviscid, compressible fluid, in which the acoustic vibrations are coupled with the 
mechanical vibration of a string located in the subset T0 = {(x, 0) : x € (0,1)} of the 
boundary of Q,. 

To describe the acoustic wave motion let v be the velocity, p the pressure and p 
the density of the fluid in our domain. Also, we consider that, at rest, the pressure 
p0 and the density p0 are constant. The linearized equations for the propagation of 
sound in an inviscid, elastic and compressible fluid, describing small disturbances, 

*Partially supported by Grant 5006/1996 (Romania) and CHRX-CT94-0471 of the European 
Union. 
♦»Supported by grant PB93-1203 of the DGICYT (Spain) and CHRX-CT94-0471 of the European 
Union. 
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are (see [11]): 

(1.1) 
J p' + p0divv = 0   in   fix (0,oo) 
| p0v' + Vp = 0      in   Qx(0, oo) 

We denote by ' the time derivative. 
Let W be the transversal displacement (in the plane of Q) of the string which 

is assumed to be dissipative and with Dirichlet boundary conditions. The interior 
pressure p of the fluid is acting on the string: 

,10v / W"-Wxx + W'=p-p0   on   r0x(0,oo) 
^•^ \ W{0) = W(l) =0 for   t e (0, oo). 

On T0 we impose the condition of continuity of the velocity fields which results from 
the assumption that the string is impenetrable to the fluid. The part I\ = dfl \ T0 

of the boundary of Q, is rigid and impenetrable, thus leading to zero normal velocity. 
We obtain the following boundary conditions: 

( v ■ v = 0      on    I\ x (0, oo) 
(L3) \$.v = W   on    r0x(0,oo). 

By v we denote the outward unit normal to the boundary. 
In studying sound waves, it is usual to assume that p = f(p). In the case of small 

perturbations, we can consider that the relation between p and p is linear (see [11]): 

(1.4) P ~ Po = c2
0{p - po) 

where c0 is the speed of sound in our fluid. 
We obtain the following system in v, p and W: 

^ + Vp = 0 
p' + div v = 0 

v ■ v = 0 
v-v = W 

W - v = 0 
(1.5) 

in fl x (0, oo) 
in Q, x (0, oo) 

on Ti x (0,oo) 

on r0x(0,oo) 
on r0x(o,oo) 
for t e (0, oo) 
in fi 
on r„. 

W"-Wxx+W'-p: 
W(0,t) = W(l,t)=0 
v(0)=v°,    p(0)=p° 
W{0) = W°,    W'(0) = W1   on 

Observe, in particular, that the string is fixed at its ends x = 0,1. 
For simplicity we have modified slightly the model introduced in [3] considering on 

the boundary an active string instead of an Euler-Bernoulli beam. Nevertheless all 
the techniques we use here can be easily adapted to that case and similar results can 
be proved. 

We define the energy associated with this system by: 

(1.6) E{t) = \j{\ W |2 V) + \ ( {{Wxf + (wn 

In (1.5), for simplicity, we have normalized all the constants to unity. If this is not 
done one has to change in a convenient way the definition of the energy but the main 
results of this paper remain valid. 
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The system has a dissipative nature. Indeed, multiplying in (1.5) the first equation 
by v, the second equation by p, the fifth equation by W and integrating by parts, 
we get, formally, that: 

dE{t)/dt = - ( {W'f < 0 
JTa To 

The aim of this article is to study the effect of the damping term, which is con- 
centrated in the string equation, on the asymptotic dynamics of the whole system. 
We shall prove that the dissipation can force the strong stabilization but it cannot 
ensure an uniform decay rate. 

We remark that this result is not surprising in view of the structure of the damping 
region. Indeed, as Bardos, Lebeau and Rauch prove in [6], in the context of the control 
and stabilization of the wave equation in bounded domains, if one characteristic ray 
escapes to the dissipative region we can not expect an uniform decay to hold (see 
also Ralston [21]). In our case each segment {(x,a), x e (0,1)}, 0 < a < 1, is such 
a ray and therefore the decay rate may not be uniform. 

Nevertheless, in our problem, the lack of uniform decay is fundamentally due to 
the hybrid structure of the system. Indeed, the nature of the coupling between 
the acoustic and elastic components of the system (i.e. the boundary conditions 
on F0) allows to build solutions with arbitrarily slow decay rate and with the energy 
distributed in all of the domain and not only along some particular ray of geometrical 
optics as in [21]. 

B. P. Rao in [22] has shown that, in various one-dimensional hybrid systems, the 
coupling is such that the damping term is a compact perturbation of the underlying 
conservative dynamics. This kind of arguments does not apply in our problem, since 
we are in space dimension two. Actually, in [17], we have proved that, in a similar 
system, the difference between the semigroup generated by the dissipative system 
and the one generated by the corresponding conservative system is not compact. 

Let us mention that a similar problem, in which Neumann boundary conditions are 
considered for the string, was studied in detail in [16] and [17]. Prom the mathematical 
point of view this case is easier since it allows us to separate the variables and to 
obtain explicit informations about the eigenvalues and eigenfunctions of the system. 
In this way we have showed that there exists a sequence of eigenvalues approaching 
the imaginary axis at high frequencies and that the corresponding eigenfunctions 
have the property that the energy concentrated in the string vanishes asymptotically. 
This implies that, although all solutions tend to zero when the time goes to infinity, 
the decay rate is not uniform. 

In [1] and [2] the strong stability of the following system is studied: 

$" - A$ = 0 in   D x (0, oo) 

(1.7) 

$ = 0 on 7 \ 7o x (0, oo 
d<b/dv + a$' = W on 7o x (0, oo) 
W" + A2W + A2W + $' = 0 on 7o x (0, oo) 
W = dW/du = 0 on Ö7o x (0, oo) 
$(0) = $°,    $'(0) = $J in D 
W(0) = W°,    W'(0) = wl on 7o, 
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where I? is a bounded open subset of W1 with Lipshitz boundary 7, 70 is a segment 
of 7 and a > 0. 

Observe that, since we are dealing with an irrotational fluid, the velocity v and 
pressure p can be written in terms of a potential $: v = V$ and p = —$4. When 
doing this, system (1.5) can be rewritten follows: 

(1.8) 

Let us point out some of the differences between systems (1.7) and (1.8). First of 
all observe that the potential $ is assumed to vanish on the rigid subset 7 \ 70 of 
the boundary. This simplifies the set of equilibria of the system that, in this case, is 
reduced to ($, W) = (0,0). However, the condition $ = 0 on 7 \ 70 does not seem 
to be realistic. On the other hand the continuity condition on the velocity fields has 
been modified. Indeed, the condition 

d§/dv = W, 

has been replaced by: 
d$/dv + a& = W,    a> 0. 

These boundary conditions introduce an extra dissipation on the system, since 

d.E. 

$" - A$ = 0 in Q x (0,00) 
d$/dv= 0 on Ti x (0,00) 
d$/dv= W on To x (0,00) 
W" -Wxx + W' + & = 0 on r0 x (0,00) 
Wx(0) = Wx(l) = 0 for t e (0,00) 
$(0) = $°,    $'(0) = &1 in Ü 

W(o) = W°,    W'(0) = w1 on T0. 

70 

Moreover, the displacement W is assumed to satisfy a strongly damped plate equation 
whose principal part W" + A2W + A2W is known to generate an analytic semigroup. 
In this sense, this problem is different from ours. An analogous model in which the 
strongly damped plate equation is replaced by W" — Wxx - W'xx + $' = 0 and a = 0 
has been analyzed in [18]. 

In [1], taking a > 0 and 70 sufficiently large, the exponential stability result is 
proved by using multipier techniques. 

The rest of the paper is organized as follows. 
In Section 2 we present an abstract formulation of the problem and we give a 

result of existence, uniqueness and stability of solutions. Since we are dealing with 
a linear system all these results are direct consequences of the classical theory of 
maximal-monotone operators. 

The asymptotic properties of the solutions are studied in Sections 3 and 4. 
In Section 3 we prove the convergence of each solution of the system to an equi- 

librium point uniquely determined by the corresponding initial data. We do this 
using classical techniques involving La Salle's Invariance Principle and Holmgren's 
Uniqueness Theorem. 

The rate of the convergence to the equilibrium is studied in Section 4. We prove 
that the decay rate is not uniform. In order to do this we start from the observation 
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that the same property is true for the system with Neumann boundary conditions 
for the string and next we use the fact that the difference between these two systems 
is negligible at high frequencies. 

2. Existence and uniqueness of solutions 

We define the space of finite energy corresponding to (1.5) by: 

x0 = c x L\n) x tfoHro) x L2(r0), 
C = {v£ L2(ü) x L2(ü) :   curl v = o} = 

= {* = (Vl,v2) G L2(Q) x L\Cl) : jf (gt* - ^ = 0, V^ G C^) 

Remark 1. Observe that v £ £ if and only if there exists a function $ G if^fi) such 
that V$ = tf. 

XQ with the natural inner product is a Hilbert space. 
We define in X0 the unbounded operator (D(A), A) in the following way: 

A{v,p, W, V) = (Vp, div v, -V, -Wxx + V-p), 
V(A) ={U = (v,p,W,V) £ X0 : A{U) eXo,v-v = 0 on Tu v ■ v = V on T0} . 

Remark 2. Let (v,p,W,V) £ T>(A). Observe that divv G L2(Q) and v G £ «mpfa/ 
tftoi tfiere ezists $ G Hl(Q.) with V$ = u such that A$ G L2(fi). Since, in addition, 
we have v ■ v = 0 on Y\ and v ■ v — V on To we obtain that 

A$ G L2(fi) 
d$/dv = 0 on Ti,    0$/0i/ = V G i^o) on T0. 

5mce Q, is convex it results that $ G H2(Q.) (see [8], Theorem 5.1.3.5, p. 263). It 
follows that V{A) C (H\Ü))2 x H^Q) x #2(r0) n H£(T0) x i#(r0) <""* «Äere/ore 
P(A) «s compact in X0. 

We can consider now the following abstract Cauchy formulation of (1.5): 

r U' + AU = 0 
(2.1) !7(0) = *7o 

{ U{t) = {v,p,W,W'){t)eV{A). 

First, we have a classical result of existence, uniqueness and stability for the system 
(2.1). The terminology we use is the same as in [7]. 

Theorem 2.1. i) A is a maximal monotone operator in XQ generating a strongly 
continuous semigroup of contractions, {S(t)}t>o, in X0. 

ii) Strong solutions: If U° = {v°,p°, W°,Wl) G V(A) then there exists a unique 
strong solution S(t)U° = U G C([0, oo), V(A)) D C\[0, oo), X0) of (21). 

Hi) Weak solutions: If U° = (v°,p°, W°,Wl) G X0 then there exists a unique 
solution S(t)U° = U £ C([0, oo), Ab) of (21). 
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<2'2> f« = -/r <"">'■ 

For any weak solution, the associated energy (1-6) satisfies: 

olE, 
*) = -.    . 

Proof. We prove first that the operator A is maximal monotone in X0. 

Indeed, if U° = {v°,p°, W°, W1) e V(A) then (AU°, U°) < - f {Wlf < 0, which 
JTa 

means that A is monotone. 
On the other hand, for all F = (flt f2, f3, ft) € X0 we can find a unique solution 

U = (v,p, W, V) £ V(A) for the equation (A + I)U = F. This is equivalent to solve 
the following system: 

(2.3) divv + p = /2, v ■ v = 0 on Ti and v ■ v = V on T0 

V + W = f3 

{ -Wxx + V-p + V = f4and W(0) = W{1) = 0. 

First, we consider the variational formulation of (2.3), which consists in finding 
(p,W) in H^il) x H%(r0) such that, for all ((p,u) £ Hl(fl) x H^(T0) : 

[ Vp-Vip+ [ ptp+ [ W(p+ f Wxux - f pu + 2 [ Wu 

(2-4) r ^ , r r 

= / /i-VV+ / /2</> + / /sv+ / (/4 + 2/3K 

The left side of the equation (2.4) defines a continuous and coercive bilinear form 
in (H1(Q) x ^(To))2 while the right side defines a continuous linear form in H1^) x 
H\T0). 

Applying Lax-Milgram's Lemma it results that (2.4) has a unique solution (p, W) 
in iJx(fi) x HQ(T0). Finally, in view of the classical regularity results for Laplace's 
operator, this implies that A +1 is maximal. 

Since the operator A is maximal monotone in XQ we can apply the Hille-Yosida 
theory (see [7], Theorem 3.1.1, p.37) and obtain the stated results.    D 

3. Strong stabilization 

Concerning the asymptotic behavior of solutions we prove first the following theo- 
rem. 

Theorem 3.1. For each initial data U° = (ü°,p°, W°, W1) in X0 the corresponding 
weak solution of (2.1) tends asymptotically towards the equilibrium point (0,b,ba(x), 0) 

where b = ^ ( f p° + [ W°) and a{x) = \{-x2 + x). 
13 \JQ JTO        / 2 

Remark 3. We obtain that the velocities of the fluid and the string go to zero whereas 
the pressure of the fluid and the position of the string tend to some functions that are 
uniquely determined by the initial data. Notice that the pressure stabilizes around a 
suitable constant while the asymptotic deformation of the string is a parabola. 
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Proof. The main tools of our analysis are an extension of the well known Invariance 
Principle of La Salle and Holmgren's Uniqueness Theorem. 

Observe first that it is sufficient to consider only initial data U° = (v°,p°, W°, Wl) 
in T>{A). A standard density argument and the property of stability (2.2) enable 
us to complete the proof. In this case Theorem 2.1 gives an unique strong solution 
U(t) = (v,PjW,W')(t) = S{t)U° for the equation (1.5), with {U(t)}t>Q bounded in 
T>{A). Since V(A) C X0 with compact inclusion, we have that {U(t)}t>o is relatively 
compact in X0. 

We now describe the equilibrium points corresponding to our problem. These are 
elements Z = (u,r,X,Y) G V{A) with S(t)Z = Z for all t > 0. It follows that the 
equilibrium points are characterized by the system: 

(3.1) 

r Vr = 0 in ft 
div u = 0 in ft 
u ■ v = 0 on To 
-Xxx - r = 0 on r0 

I X(1)=X(0) = 0. 

Prom (3.1) we deduce that the equilibrium points are (0, b, ba(x),0), where & is a 
real constant and a(x) is the solution of the differential equation: 

-axx -1 = 0, x G (0,1) 
a(0) = a(l) = 0. 

On the other hand we remark that the energy function defined by (1.6) is a Lya- 
punov function for the dynamical system defined by S(t)U° = U(t) since it satisfies 
relation (2.2). We prove now that E(t) is a strict Lyapunov function. To do this let 
Z° = (u0,r°,X0,Y°) G X0, Z(t) = (u,r,X,Y)(t) = S{t)Z° for all t > 0 and suppose 
that the energy of the solution Z(t) is constant. Hence Y(t) = 0, by (2.2). 

It follows that (u, r, X, Y) satisfies: 

' H! + Vr = 0 in fi x (0, oo) 
r' + div u = 0 in tt x (0, oo) 

(3.2) )u-v = 0 on düx(0, oo) 

Xxx - r = 0 on T0 x (0, oo) 

X(0,t)=X(l,t) = 0 for te(0,oo). 

Therefore: 

(3.3) 
r" - A r = 0    in ft 
dr/dv = 0        on 9ft 
r' = 0 on r0. 

We can apply now Holmgren's Uniqueness Theorem (see [10], Theorem 8.6.5, p. 
309 and [12], Theorem 8.1, p. 88) which implies that r' = 0 in ft x (l,oo) and so 
r{t, x,y) = r(x,y) in ft x (1, oo). 

Prom (3.3) we can deduce that r = b in ft x (1, oo) where b is a real constant. 
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Moreover, from (3.2), it follows that u = 0 in Q. x (1, oo) and X is solution of the 
equation: 

-Xxx - b = 0 on T0 x (1, oo) 
X(0,t)=X(l,t)=0    forte(l,oo). 

Taking into account the uniqueness of solutions of the system (3.2) we obtain that 
Z° = (u0,r°,X0,Y°) = (6,b,ba(x),0). Hence Z° is an equilibrium. Therefore E{t) is 
a strict Lyapunov function. 

We are now in conditions to apply La Salle's Invariance Principle. 
Let now U° = {v°,p°, W°, W1) be the initial data for (1.5). By La Salle's Invariance 

Principle it follows that the trajectory tends to the set of the equilibrium points when 
the times goes to infinity. Let us prove that, in fact, the trajectory converges to a 
unique point. 

Integrating the second equation of (1.5) in Q, we deduce that the quantity / p° + 

f W° is constant along the trajectory. Since the equilibrium points are of the form 

(6,b,ba(x),0) it follows that the corresponding solution of (1.5) tends to an unique 

equilibrium point, the one for which b= — f     p° +      W°j.     D 

Remark 4. We can decompose the space X0 as X0 = <*o © xo> where: 

Xg = {(A A W°, V°) e Xo : InP° + /r„ W° = o}, 
X* = {@,b,ba(x),0) &Xo, beM.}. 

The projection of the solution U(t) of (1.5) on X^ is a constant function in time 
whereas, by Theorem 3.1, the projection on X$ tends to zero as t goes to infinity. 

4. The lack of uniform decay- 

In this paragraph we prove that the rate of decay is not uniform. Results like this 
are typical for linear hybrid systems in which the dissipation is very weak: it can 
force the strong stabilization but it cannot ensure the uniform decay. 

First of all we recall that a strongly continuous semigroup {S(t)}t>0 has exponential 
decay if there are two constants u > 0 and M > 0 such that 

(4.1) ||S(t)||<M exp(-wi),    Vi>0. 

We also remark that, in the case of linear semigroups, the exponential decay is equiv- 
alent to the uniform decay. Therefore, if a linear semigroup {S(t)}t>o does not have 
exponential decay then there are initial data U° such that S(t)U° decays arbitrarily 
slowly to zero. More precisely, if ip : [0,oo) —> oo is a continuous decreasing func- 
tion such that ip(t) —> 0 as t —> oo then there exist an initial data U° G X0 and a 
sequence {tk)k>o tending to infinity such that USfo)*/0!! > ip{tk) (see [13]). 

When the Dirichlet boundary conditions of W in (1.5) are replaced by the Neumann 
ones, i.e. if W is assumed to satisfy 

V^(0,£) = ^(1,0) = 0,    i>0 
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this result is easy to show. Indeed, under these boundary conditions one can find a 
sequence of solutions {(yn,pn, Wn)}nen of the type (vn,pn,Wn) = e~Xnt{vn,pn, Wn) 
in separated variables such that lZe\n —► 0 as n —> oo (see [17]). However, the sepa- 
ration of variables does not apply with the boundary conditions we are considering. 

In order to prove that, for our system, there is no uniform decay we analyze first 
a conservative problem. Next, using the fact that these two systems are very close 
one from another (in a way that we shall make precise later on) we prove the desired 
property. 

We consider now the following undamped system in v, p and W: 

(4.2) 

v> + Vp = 0 
p' + div v = 0 

in 
in 

Q x (0,co) 
Q x (0, oo) 

v- v = 0 on r\ x (0,oo) 
v-v = W on r0x(o,oo) 
W"-Wxx-p = 0 
Wx(0,t) = Wx(l,t) 

v(0) = v°,    p(0) = 
W{0) = W\    W'{( 

= 0 

p° 
3) = w

1 

on 
for 
in 
on 

r0x(o,oo) 
t G (0, oo) 

r„. 

Remark 5. Since we have dropped the dissipative term W in the string equation the 
system (4.2) is conservative. On the other hand we remark that the Dirichlet bound- 
ary conditions for the string have been replaced by Neumann boundary conditions. 
This will allow us to use the separation of variables and to obtain useful informations 
about the eigenvalues and eigenfunctions of the system. We do this in Lemmas 4.1 
and 4.2. 

The initial data (v°,p°, W°, W1) is considered in the space of finite energy: 

(4.3) ^ = £xi2(a)xi1(r0)xL2(r0), 

We define the energy associated to this system in the same way as in (1.6). We 
also define in X the unbounded operator (T>(B), B): 

B(v,p, W, V) = (Vp, div v, -V, -Wxx - p), 
V[B) = {U= (v,p, W, V) G X : B(U) G X, v ■ v = 0 on I\, 

v- v = V on r0, Wx(0) = WX{1) = 0} . 

Lemma 4.1. The operator B has a sequence of purely imaginary eigenvalues (\ni)neN 
where Xn are the roots of the equation: 

(4.4) £ tanQ = 1. 

Proof. We look for a sequence of solutions {(v^,pn,Wn)}nen for (4.2) of the type 
{vn,pn, Wn) = e~Klt(un, r„, vn) where un = un(y), rn = rn(y) and vn G K. 
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We can see that (4.2) has solutions of this form if (un, rn, vn) satisfies 

!-\n i un + Vr„ = 0 for y G (0,1) 
-(A„)2rn - (rn)yy = 0 for y G (0,1) 
(r„)„(l) = 0, (rn)„(0) = -{Kfvn 

(Xnfvn+rn(0)=0. 

It follows that rn(y) = cos {Xn(y - 1)), un = —Vr„ and vn = -— sin A„ solves 

(4.5) if An is solution of the algebraic equation (4.4). 
It is well known that, for each n G N, there is a root of this equation which belongs 

to the interval (nir - ^, mr + ^ J. This concludes the proof.     D 

Remark 6. A very similar proof allows us to show that, if in the string equation in 
system (4.2) we introduce the dissipative term W, there is a sequence of eigenvalues 
such that TZe (A„) —> 0 as n —> oo as we mentioned before. This implies that the decay 
rate of the associated semigroup is not uniform. In the case of system (1.5,) under 
consideration it is difficult to show directly the existence of such solutions since we 
can not use separation of variables. 

Remark 7. The roots (A„)„ of the equation (AA) have the following asymptotic de- 
velopment: 

1 ( 1 \ An = nw H h O   -j   ,   as n -^ oo. 
nix \nA) 

For details see [19], p. 12. 

To each eigenvalue \ni given by Lemma 4.1 it corresponds an eigenfunction £„ 
defined by: 

(4.6) Cn = 

/ _Lvcos(A„(y-l)) ^ 
cos(An(y- 1)) 

sinAra 

An 
\ i sin An ) 

We shall denote by f£, j G {1,..., 4}, the components of £„. 

Lemma 4.2. // (^n)„ is the sequence of eigenfunctions of system (4.2) corresponding 
to the eigenvalues (Xni)n given by Lemma 4.1 then: 

i) The last two components of £n tend to zero when n tends to infinity. 
ii) The sequence (£„)„ does not tend to zero in X when n tends to infinity. 

Proof, i) Since \n = mr + I-O(-T) it follows that (sin An)„ tends to zero in M 
' n-K \n6 J 

when n tends to infinity. 
ii) We simply remark that 
... ,.,   ^ 11X2112 *     sin2An 1 
\\U\2Xo > ll£lli*(n) = 2 " "4Ä * 2 aS n ^ °°' 
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Remark 8. Lemma 4.2 shows that there are solutions of (4.2) in which the effect of 
the vibrating string vanishes asymptotically. This indicates that the boundary condi- 
tions for the string are not very important at high frequencies. Since the system with 
Neumann boundary conditions does not have an exponential decay (see Remark 6) 
we can expect that this will be the case for system (1.5) too. Indeed, as the proof of 
the following Theorem shows, the solutions of (4.2) can be slightly modified in order 
to obtain solutions of fl-öj with arbitrarily small exponential decay rate. 

The main result of this paper is the following: 

Theorem 4.3. The decay rate of the semigroup {S(t)}t>o is not exponential in the 
space XQ. 

Proof. We shall prove the theorem by contradiction. Suppose that {S(t)}t>o has 
exponential decay in X$, i.e. there are two constants u> > 0 and M > 0 such that: 

\\S(t)\\xo <M exp(-ujt),    Vi>0. 

Let TZ(A : ß) be the resolvent of A in ß, 1Z(A : ß) = (A — ßl)-1, where ß is a 
roc 

complex number in the resolvent set of A. We recall that TZ(A : ß) = /    eßtS(t) dt 
Jo 

(see [20], Theorem 3.1, p. 8). Hence 

(4.7) \\K(A :M)IU0O</O   e
Ke^||5(i)|Uodt<yo   Me^^'dt. 

Since the operator A is dissipative we have that the resolvent is well defined from 
X® to V(A) for all imaginary numbers ß (with TZeß = 0). In this case we obtain 
from (4.7) that the resolvents are uniformly bounded: 

M 
(4.8) |\K(A : ß)\\xo <—    for all ß with Tleß = 0. 

We shall prove that there exist a sequence of imaginary numbers (An i)nen, Xn 6 R, 
and a sequence of functions ($„)neN C Af0°, ||$n|U° = 1) sucn that 

(4.9) H^CA : ß)$n\\x°—> oo when n—► oo. 

This contradicts (4.8) and the proof is completed. 
In order to do this let (An i)nen be the sequence of eigenvalues of the problem (4.2) 

given in Lemma 4.1 and let (£n)nsN be the corresponding eigenfunctions given by 
(4.6). 

Observe that £n ^ X® because the third component, which is a constant, does not 
belong to ^(r0). We shall "cut-off" this constant function in order to get a slightly 
modified one in HQ(TO). 

For each n G N we define the function un : [0,1] —> [— 1,1] by: 

(4.10) 

(-lAnlar + lJei*»"--!, if x G [o, ^ 

(|An|x-|An| + l)erai^FT,     if xe (l-r^pl 

otherwise, 
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and the function hn as the solution of: 

f -Ahn + hn = 0 

(4.11) 
dhn 
dv 
dK 
dv 

= 0 

in Q, 

onTi 

= (sinAn)u„    on T0. 

Let now 

*l>n = 

(      Vhn      \ 
sin An  rl„, 

Jo an and <Pn = £n - VV A„ 
shiA„ 

y -isinAnu„ y 

Prom the definitions of the functions un and hn it follows that ipn &V{A)f\ X$ for 
all n <E N. 

(.4- \niX)ipn Finally let $„ = 

We obtain that: 
\\{A - \ni1)fn\\x» 

1l(A:\ni)®n = 
<Pn 

'  WiA-XniTjifnWxo' 

and we want to prove that (4.9) holds. 
Since we need more information about the norms of (pn and (A - An iT)<pn we shall 

prove first some properties of the functions un and hn. 

Lemma 4.4. The functions un and hn defined by (4.10,) and (4.11,) respectively have 
the following properties: 

V\\un\\h=0(£). 
ii)\\(un)xx\\h=0((\nf). 

1 
in)\\hn\\2m=0 

(An): 

iv)\\khn\\li = \\hn\\2L2=u 

Proof, i) From (4.10) we obtain 

|2 

(An); 

2|A„|i 

,M\l^i) =2^|A"'(-|An|a; + l)2e^- < 

ii) We have that 

11 \U"n)xx\ | 

ajCi,<-w*+i>,=°Gc 

l*nl 
^(o,i)-2|A„|4yo      (|An|:c_1)4 

2jA—n\x 
ß\Xn\x-l 

where c -L 
i     l 

(s-iy 

= 2iA-is/o1(r^eÄdfl^2c|A"1'' 
- e^i ds is a constant which does not depend on A„. 
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iii) Prom (4.11) we deduce that, for all 6 > 0, 

=    -sinAn /   unh 
Jr„ 

I sin AJ 
< 

ll^n||#i(n) |pnlL2(f2) 
To 

sinAJ /l 

.siriA^   /If,    |2 . x f   ,,   ,2\ <J—=—Ll-/   K   +*/   KM 6 Jr0 

-g Jro\un\2 + 5c\\hn\\2Hl{n)J . 

Taking 8 |smA„|c we obtain that 

IIMffi(fi) <c|sinAn|2y   \un\2. 

Here c is a generic positive constant that may vary from line to line. 

Since sin An = Ö (— ) and /   \un\2 = O ( — ) by i), iii) follows, 

iv) We simply observe that 

|| - A/ln||L2(Q) = ||/ln||L2(fi) < ||/ln||ffl(n) 

and use iii). The proof of the Lemma is now completed.   D 

In order to complete the proof of the theorem we estimate 11 (.4 — An i T)<pn\ \xo and 
H'/'ralU0 when n tends to infinity. 

Observe first that, by Lemma 4.4 i), we have 

(4.12) |K|Uoo > \\£\\LHQ) 

On the other hand 

(A- \nil)ipn = 

( 

sin An , 

V "X 

sinAn  f
1 1 

—r— /   un  — 
A„    Jo 

-Vhn 

—Ah,, + sin A„ /   u. 

as n —> oo 

/' Jo n  /     ^n 

o 
.    . smAn   rl . 
(Un)xx -^ :   /    Un + Sin Xn Un A„    Jo 

We obtain that 

\\(A-\niT)<pn\\%o < ||/in||Hi(n) + 2||A/i„||i2(n) 

2sin An 

An 

un)x*||£2(ro) + |K||£2(ro)) +4|sinA„|2||un|||2(r, o)- 

Taking into account the results of Lemma 4.4 and the fact that sin An = Ö I — ) we 

obtain that 

(4.13) IK-4- \iiZ)<Pn\\x° —*■ 0 wnen n —*■ °°- 

The last result together with (4.12) contradicts (4.8).   So the assumption that 
{5(£)}t>o has exponential decay must be false and the proof is completed.    D 
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Remark 9. Analyzing the exponential stability of the classical wave equation with dis- 
sipation on the boundary 

(u" - Au = 0 in tt x (0, oo) 

^ + u' = 0 on r0x(0,oo) 
av ,       . 
u = 0 on Ti x (0, oo) 

Bardos, Lebeau and Rauch in [6] prove that if one characteristic ray escapes to the 
dissipative region T0 we can construct solutions with an arbitrary decay rate and with 
the energy concentrated along this ray. In our case every segment {{x,y0) : x G 
(0,1)}, for any y0 G (0,1), constitutes a ray with such a property and their argument 
could be applied as well. 

Nevertheless the proof of Theorem 4.3 shows that we can find a sequence of solutions 
of (1.5) with the energy uniformly distributed in all fi and with arbitrarily small 
exponential decay rate. Indeed, if ($„)„ is the sequence considered in the proof, let 
(S(i)$„)„ be the sequence of corresponding solutions of (l.^t). By (4.7) we have that 

/•OO 

\\K(A : \ni)$n\\x° < Jo   \\S(mn\\xo dt. 

If (S(t)®n)n had an uniform exponential decay rate, for example, 
\\S(t)$n\\xo < Mexp(-wt), then 

M 
\\1l(A:\ni)®n\\x°< 

U) 

which is not true since (4.Q) holds. 
Therefore the lack of uniform decay of our system is of a different nature and is 

related not only to the support of the dissipative mechanism but also to the nature of 
the boundary conditions or of the coupling between the different components of the 
system. 

Remark 10. We mention that in the proof of Theorem 4.3 we may start with solutions 
(»;,pn, Wn)neN of (4.2) of the type {vn,pn,Wn) = e-Xnit(un,rn,vn) cos(rmrx) where 
un = un(y), rn = rn(y), vn G K and an arbitrary m G N. Therefore we can find a 
sequence of solutions of (l.b) with arbirary exponential decay rate and with a fixed 
frequency of vibration in the x-direction (m G N fixed). This is due to the fact 
that the one-dimensional problems obtained by separating the variable x do not have 
an exponential decay for m fixed. This is an important difference with respect to 
system (414) in which the exponential decay holds if the frequency of vibration in the 
x—direction is fixed, but with a decay rate that vanishes asm —> oo. 

5. Comments 

In [3] a two-dimensional model is presented in which, on the subset T0 of the 
boundary, an Euler-Bernoulli beam with fixed ends is considered. The methods 
developped in this paper can be adapted to this type of problems too. 

The results of Sections 2 and 3 can be generalized to similar models in other 
domains. For instance, if Q. is a bounded open set in E2 with smooth boundary and 
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T0 is an open subset of the boundary of the domain, one can replace in (1.5) the wave 
equation satisfied by W by 

d2W 
W" - -— + W - p = 0   on   r0 x (0, oo) 

where J^ is the derivative in the tangential direction. 
The results of Section 4 may be extended to some particular geometries. For 

instance, in [15] we analyze the case in which Q is a ball of R2 and the dissipative 
term acts on the whole boundary of Q. We obtain that the corresponding system 
does not have exponential decay. This indicates something we already pointed out 
in Remark 9: the lack of uniform decay in this type of systems is due to the hybrid 
structure and not to the localization of the dissipation in a relatively small part of 
the boundary. Although this model does not have much physical meaning, all the 
techniques we used there can be adapted to the case of a cavity enclosed by a thin 
cylindrical shell which is much more realistic (see [4]). 
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ABSTRACT. In this paper we study an optimal control problem for linear parabolic systems 
with pointwise state constraints and measurable controls acting in the Dirichlet bound- 
ary conditions. Using the framework of mild solutions to parabolic systems with nonregular 
dynamics, we prove a general existence theorem of optimal controls and derive necessary op- 
timality conditions for the state-constrained problem under consideration. Our variational 
analysis is based on a well-posed penalization procedure to approximate state constraints 
and then to study a parametric family of approximating problems. The final result estab- 
lishes necessary optimality conditions for the original state-constrained problem by passing 
to the limit from approximating problems under a proper constraint qualification. 
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1. Introduction 

This paper is devoted to optimal control of parabolic systems with nonregular 
Dirichlet boundary conditions and pointwise state constraints. It is well known that 
the Dirichlet boundary control case is the most challenging and the least developed 
since such conditions offer the lowest regularity properties of the parabolic dynamics; 
cf. [1], [2], [5]-[12], [17], and references therein. The presence of pointwise state con- 
straints brings an additional nonsmoothness to optimal control problems and requires 
the development of special methods for their variational analysis. 

In this paper we provide such an analysis based on the theory of mild solutions 
to nonregular parabolic systems and well-posed smooth approximations. Crucial 
elements of this analysis and the corresponding results have been presented in [14]- 
[16] for certain special cases of the problem under consideration related to minimax 
control in uncertainty conditions. 

In this paper we consider a general Dirichlet boundary control problem with a 
nonlinear integral cost functional involving the final state of the n-dimensional lin- 
ear parabolic equation. Under natural assumptions we prove the existence of op- 
timal controls and necessary optimality conditions in the presence of magnitude 
control and state constraints. To obtain necessary optimality conditions for the 
state-constrained problem we develop a constructive penalization procedure involving 
smooth approximations of multivalued maximal monotone operators. We establish 

*This research was partly supported by the National Science Foundation grant DMS-9404128 
and the USA-Israel BSF grant 94-00237. 
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the well-posedness/strong convergence of approximations in appropriate spaces and 
derive necessary optimality conditions for approximating solutions. Finally, neces- 
sary optimality conditions for the original state-constrained problem are established 
under a proper constraint qualification which is different from the standard Slater 
interiority type. 

The paper is organized as follows. In Section 2 we formulate and discuss the 
Dirichlet boundary control problem of our study, present preliminary results from the 
theory of mild solutions, and prove a general existence theorem of optimal controls. 
Section 3 concerns with the development and justification of the main approximation 
procedure; it contains convergence results as well as necessary optimality conditions 
for approximating solutions. In the final Section 4 we furnish a limiting process 
to derive necessary optimality conditions for the original state-constrained problem 
under a proper constraint qualification. 

2. Problem Setting and Existence of Optimal Solutions 

Let ft C RN be an open and bounded domain whose boundary T is an (n - 
1)-dimensional manifold. With T > 0 we set Q := (0,T) x ft and E := (0,T] x T. 
Let A be a second-order uniformly strongly elliptic operator on ft given in the form 

N      g g N Q 

i^dxi 'dx/    ^        dxi 

with the smooth real-valued data ay (a;), Oj(x), and üQ{X). 

We consider the following Dirichlet boundary control system for linear parabolic 
equations 

(2.1) 

yt + Ay = / a.e. in Q, 

y(0,x) = y0(x), x G ft, 

ty(t,x) =u(t,x), {t,x) G E 

where yt denotes the derivative of y with respect to time t, f € L°°{Q), and yo{x) G 
HQ (ft) n iJ2(ft). In what follows we impose pointwise state and control constraints of 
the magnitude type: 

a < y(t,x) < b a.e.  (t,x) G Q, 

^ ' ' c<u(t,x)<d a.e.  (t,i) £ E 

where both intervals [a, b] and [c, d] contain 0. 
We say that u is a feasible control to system (2.1) if the corresponding trajectory 

y satisfies the state constraints (2.2). We always assume that system (2.1) admits at 
least one feasible control u. 

Denote by 

Uad := {u G Lp(0, T; L2(r)) | c < u(t, x)<d a.e. (i, x) G E} 

the set of admissible controls where p is a positive number that will be specified 
later. In the sequel the solution (trajectory) y of (2.1) corresponding to u G C/ad is 



B.S. Mordukhovich and K. Zhang 225 

understood in the mild sense; cf. [1], [8]-[ll], [18]. This means that y : [0, T] -► L2(Q) 
is continuous and admits the following Cauchy-like representation: 

y{t) = S{t)y0+ fs{t-T)f(r)dT 
(2.3) 

+ f A3/4+6S{t - T)i41/4-6Du(r)dT V<5 e (0,1/4] 
Jo 

where S(-) is the strongly continuous analytic semigroup generated by the operator 
-A, /(•) G L°°(Q), and 

D : L2(r) -> V{A1'^6) = H1'2-26^) 

is the so-called Dirichlet map. The latter operator is defined by z = Du through the 
solution of the elliptic boundary-value problem 

j-Az = 0 inQ, 
1 z(t,x) = u(t,x), (t,i)eS. 

It is well known that the Dirichlet map is continuous for 6 G (0,1/4] and, moreover, 
system (2.1) has a unique mild solution for each u € Uad when p is sufficiently large; 
see, e.g., [11] and [16] for more discussion and references. 

Note that, being a L2(fi)-valued function, y{-) = y(t,x) is merely measurable with 
respect to (t,x). This lack of continuity creates certain technical difficulties to deal 
with nonregular Dirichlet boundary conditions. Nevertheless, mild solutions provide 
a reliable ground to study optimal control problems involving such conditions. 

Let us consider the performance index (cost functional) given by 

J{u,y) := f ip(y{T,x))dx+ ff g{t,x,y(t,x))dtdx 
(2.4) Jn Q 

+        h(t,x,u(t,x))dtdax 

where ax is the Lebesgue measure on I\ Observe that the first term in (2.4) depends 
on the final state of (2.1) that creates additional difficulties in the framework of 
nonregular Dirichlet boundary conditions; see, e.g., Chapter 3 of [12]. 

Throughout the paper we impose the following hypotheses on the integrands in 
(2.4): 

(i) ip G C^QR) and there is a nonnegative function kx G L2(R) as well as a constant 
Ci > 0 such that 

W{z)\ <ifci(2!) + Ci|z|   VZGM. 

(ii) g is measurable in (t,x), continuous in y, and \g(t,x,y)\ is majorized by a 

L1(Q)-function for all y G [a,b].  In addition, — is measurable in (t,x) for 

any y G K. and there is a nonnegative function k2 G L2(Q) as well as a constant 
c2 > 0 such that 

\^-(t,x,y)\<k2(t,x) + c2\y\ a.e.  (t,x)eQ,  Vy G R. 
dy 
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(iii) h is measurable in (t, x), convex and continuous in u, and bounded from below 

by a L1(E)-function for all u G [c,d\. In addition, — is measurable in (t,x) 

for any u G R and there is a nonnegative function k3 G Lq(E) (l/p+ 1/g = 1) 
such that 

\—(t,x,u)\ < k3(t,x) a.e. (t,i)eE,  VwG[c,d]. 

The main concern of this paper is the following optimal control problem: 

(P) minimize the cost functional (2.4) over the Dirichlet boundary control system 
(2.1) subject to u G Uad and the state constraints (2.2). 

The first question we consider is the existence of optimal controls to problem (P). 
To establish a general theorem in this direction as well as other convergence results 
for mild solutions of (2.1) we are going to employ certain continuity properties of the 
linear operator 

(2.5) Cu = (Cu)(t) := f A3/4+sS(t - T)A
1
'^

SDu{r)dT 

from D>(p,T;L2(T)) into Lr(0,T;H^2-e(Q)) where p, r G [l,oo], 6 G (0,1/4], and 
e G (0,1/2]. Here Hxl2~e(Q) C L2(fl) is the Sobolev space whose norm ||y||i/2-e, 
being stronger than HZ/HL^), can be defined by ||y||i/2-e := M

1/4"£/2||i2(n); cf. [12]. 
Note that H°(Q) = L2(Q). When t = T,we use CT to denote (2.5). 

The following assertion was proved in [16], Proposition 3.1, based on estimates in 
Washburn [18] and Lasiecka-Triggiani [9]. Similar but somewhat different properties 
were established in [10]. 

Proposition 1. Let p > 4/e with e G (0,1/2]. Then the operator £ : 1^(0, T; L2(T)) 
—y C([0, T]; i71/2^e(fi)) is linear and continuous. Moreover, the operator CT : LP{Q, T; 
L2(r)) —> Hl/2~S(Q) is also continuous and its adjoint operator C? : H~ll2+£{Q) —> 
1,9(0, T; L2(r)) (1/p + 1/q = 1) is given by £*T = {AS(T - t)D)*. 

The next assertion, proved in Proposition 3.4 of [16], is crucial in passing to the 
limit in approximation procedures throughout the paper. 

Proposition 2. Let p > 4/e with e G (0,1/2). Then the weak convergence ofun—>u 
inLP(0,T;L2(T)) implies 

Cun —> Cu strongly in L2(Q)  as n —> oo. 

In what follows we always assume that p is sufficiently large to ensure the conver- 
gence property in Proposition 2 with some e G (0,1/2). Now we can formulate and 
prove the existence of optimal controls in (P). 

Theorem 3. Under the assumptions made above there exists an optimal solution 
(ü,y) G Uad x C([0, T]\ Hll2~e(£l)) to the Dirichlet boundary control problem (P). 

Proof. Let (un, yn), n = 1,2,..., be a minimizing sequence of feasible controls un in 
(P). For each n = 1,2,... we consider the corresponding mild solution yn of system 
(2.1) that is uniquely defined by un and belongs to the space C([0,T];H^2~E(Q)) 
where e is any given number in (0,1/2] (this easily follows from Proposition 1). We 



B.S. Mordukhovich and K. Zhang 227 

always take e < 1/2 to ensure the convergence property in Proposition 2 with large p. 
Since {un} C Uad is weakly compact in 1/(0, T; L2(T)), there exist a control ü e Uad 

and a subsequence of {un}, still labelled as {un}, such that 

un^>u weakly in Lp(0,T;L2(T)) as n -> oo. 

Proposition 1 ensures that operator (2.5) acting from i/(0,T;L2(r)) into C([0,T]; 
//1/2_£(fi)) is weakly continuous. By (2.3) this implies that 

2/n y weakly in C([0,T\;H1/2-e(il)) 

where y is a mild solution of (2.1) corresponding to u. Now employing Proposition 
2, we conclude that 

yn —y y strongly in L2(Q) as n —> oo. 

The latter ensures the existence of a subsequence {ynk} C {?/„} with 

ynk(t,x) ^y{t,x) a.e.  (t,x)eQ as fc -*• oo. 

Such a pointwise convergence implies that the limiting trajectory y satisfies the state 
constraints (2.2) since each yn has this property. Therefore, ü is a feasible control to 

(P)- 
To prove the optimality of u in (P) we invoke the well-known fact that due to 

(iii) the last term in (2.4) is a weakly lower semicontinuous functional in the space 
Lp(0,T;L2(r)). Furthermore, the Lebesgue dominated convergence theorem allows 
us to pass to the limit under the integral signs in the first and second terms of (2.4), 
due to the pointwise convergence of ynk —> y and assumptions (i) and (ii). Therefore, 

J{ü,y) < liminf J(unk,ynk) 
k—>oo 

that proves the optimality of ü in (P).        D 

Remark. We do not need smoothness assumptions on <p, g, and h to prove the 
existence of optimal controls in Theorem 3. The most essential requirements for 
this are the convexity of h in u and the right choice of p and e ensuring the conver- 
gence/continuity properties in Propositions 1 and 2. However, we use the smoothness 
assumptions in the subsequent sections to derive necessary optimality conditions. To 
simplify the exposition we have combined all the assumptions together. 

3. Necessary Optimality Conditions in Well-Posed Approximations 

In this section we develop a well-posed approximation procedure allowing us to 
remove the state constraints in (P). We establish an appropriate strong convergence 
of approximations and derive necessary optimality conditions for approximating so- 
lutions. The latter results can be viewed as suboptimality conditions for the state- 
constrained problem (P) being the base to obtain necessary optimality conditions for 
(P) in the next section. 
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Let a : ft => 1 be a multivalued maximal monotone operator of the form 

[0, oo) if r = b 
(—oo,0] if r = a 
0 if a < r < b 
0 if either r < a or r > b. 

a(r) = 

Using the Yosida approximation 7_1(r - (1 + 7«) V) of a(-) and then a C^-mollifier 
in R, we may choose a smooth approximation of a(-) as 

7~1(r - 6) - 1/2 if r >6 + 7 
(27

2)-1(r - bf if b<r <b + j 
j~l(r — a) + 1/2 if r < a — 7 
-(272)_1(r- - a)2 if a - 7 < r < a 
0 if a < r < & 

(3.1) a7(r) 

with the property |7a7(r)| < 1 for all r G R and 7 > 0; cf. [2], p. 322. 
Let (w, y) be a given optimal solution to problem (P). We consider the following 

parametric family of boundary control problems without state constraints: 

(P7) minimize J7(u,y) := J(u,y) + \\u - ü||£P(0T.L2(r)) +7lK(y)lli2(o,T;L2(fi)) 
over u G Uad subject to system (2.1). 

We are going to study problems (P7) from the three perspectives: existence of 
optimal solutions, their convergence to (ü, y) as 7 —> 00, and necessary optimality 
conditions for them as 7 > 0. The next proposition answers the first question. 

Proposition 4. Let p > A/e with e G (0,1/2). For each 7 > 0 problem (P7) has at 
least one optimal solution (w7,t/7) G Uad x C([0,T]; Hll2~s{Q)). 

Proof. The set of feasible solutions to (P7) is not empty since it obviously contains 
(ü, y) for any 7 > 0. First we should check that the cost functional in (P7) is proper, 
i.e., 

(3.2) J-y{u,y) > -co V7 > 0 

for all feasible solutions (u, y) to (P7). It easily follows from assumptions (i)-(iii) 
that 

J(u,y) + \\u - ü||£p(0jT;i2(r)) > -00. 

To establish (3.2) it remains to show that 

(3.3) IM2/)IU2(0,T;L2(fi)) < 00  V7 > 0. 

Taking into account the definition of mild solutions (2.3) and estimates in [9] and 
[18], one gets 

max{|c|,rf}vmeas(r) 1^i6 ,      , , 
LHn) < M(l +      j_^g —t—) for any fixed «5 G (0,1/4) 

with some constant M > 0. Due to (3.1) the latter implies (3.3) and hence (3.2); cf. 
the proof of Proposition 4.1 in [16] for more details. 

Now arguing as in the proof of Theorem 3 and using Propositions 1 and 2, we 
conclude that the cost functional in (P7) is weakly lower semicontinuous on the set 
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of feasible controls Uad which is weakly compact in 27(0,T;L2(r)). Therefore, the 
existence of optimal controls in (P7) follows from the classical Weierstrass theorem. 

D 
Next we establish the well-posedness of the approximation procedure under con- 

sideration proving the strong convergence of optimal solutions in (P7) to the given 
optimal pair (ü,y) in the original problem (P). 

Theorem 5. Let (u,y) be the given optimal solution to (P) and let {(u7,y7)} be a 
sequence of optimal solutions to the approximating problems (P7). Then there is a 
subsequence {7^} C {7} such that 

ulk -> ü strongly inLF{Q,T;L2{Y)), y7k -> y strongly in C([0,T);H1/2-e {£!)), 

and Jlk{ulk,ylk) -> J(ü,y)  as k —> 00. 

Proof. Since (ü, y) is feasible to (P7) for each 7 > 0, one has 

(3.4) ^(«7.2/7) ^ Ji{ü,y) = J(ü,y) V7 > 0. 

Due to (3.4) and assumptions (i)-(iii) we get 

l\\uM\\h(0,T;L*(n)) < M  V7>0 

for some constant M. This yields 

(3.5) 7IM2/7) IU2(o,r;L=(fi)) -► 0 as 7 -> 0. 

Since Uad is weakly compact in the reflexive Banach space Lp(0,T;L2(r)), there 
exists a subsequence of {u7}, still denoted by {u7}, such that 

(3.6) w7 -> ü weakly in J7(0, T; L2(r)) as 7 -► 0 

for some ü G {/„<*. Denote by y a mild solution of (2.1) corresponding to ü and 
employing Proposition 2, one can find a subsequence {7*,} C {7} such that 

(3.7) ylk(t,x) —> y(t,x) a.e. in Q as k —> 00. 

To pass to the limit in (3.4) we need to show that y satisfies the state constraints 
(2.2). For this purpose let us consider the following sets: 

Q{a := {x G Q I a - 7 < y{t,x) < a};   £l\a := {x G ü \ y{t, x) <a-7>; 

ü[b:={xGÜ\b<y{t,x) <b + -y};   Qlb:={xeQ \y{t,x) >6 + 7>. 

They are Lebesgue measurable due to the choice of y G C([0,T]; Hll2~£(Q)). Taking 
into account (3.5) and the structure of a7(-) in (3.1), one has 

/   /   (2-f)-2(yM, x) - afdtdx + f   f   (yM, x)-a + j/2)2dtdx 
Jo  Jn\a Jo  Jo\a 

+ [T /   {21)-2{y1{t,x)-b)Adtdx 
Jo  Jn\h 

+ f   f   {y-r(t, x)-b- -y/2)2dtdx -> 0 as 7 -> 0. 
Jo  Jo,' 
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Applying Lemma 4.2 of [16] similarly to the proof of Theorem 4.3 therein, we conclude 
that 

a < y(t, x) < b a.e. in Q, 

i.e., (ü,y) is a feasible pair to the state-constrained problem (P). The latter yields 

(3.8) J(ü,y)>J(ü,y). 

Now passing to the limit in (3.4) and taking into account (3.6)-(3.8) as well 
as the weak lower semicontinuity of the cost functional (2.4) in the control space 
D>(0,T; L2(T)), we arrive at 

(3.9) lim \\ulk-ü\\pLP(0T.L2(T)) = 0 and   lim lk\\a^(y7k)\\hi0tT;mn)) = 0- 

The first equality in (3.9) means that ulk -> ü strongly in £?((), T; L2(r)) as k -> oo. 
By Proposition 1 this implies that ylk -* y strongly in C([0, T\; H^2-e(Ü)) as k -> oo. 
Therefore, one has ü = ü and y = y. Finally, the cost functional convergence in the 
theorem follows from the second equality in (3.9).        D 

The last result of this section provides a necessary condition for an optimal control 
w7 to each approximating problem (P7). This condition is expressed in terms of the 
adjoint operators to C and CT considered in Proposition 1. 

Theorem 6. Let (u7, j/7) be an optimal pair to problem (P7). Then one has 

0 < f[[{£*Tip'{yi)){t,x) + £*(%t,x,y7) + 27a7(y>7(y7)) 
(3-10) "= ÖV 

+ — (t, x, uy)}udtdo-x + 2p      ||u7 - ■"||^2(
2
r)(y (u7 - u)udax)dt 

for any u G I7(0,T;.L2(r)) such that u7 + 9u G Uad for all 9 G [O,0O] with some 
90>0. 

Proof. Consider variations of w7 of the form u7 + 9u G Uad with u G 1/(0, T; L2(T)) 
where 9 G [0,90] for some 90 > 0. Denote by ylu a mild solution of (2.1) corresponding 
to u7 + 9u and consider a function ip : [0,90] -> E defined by 

ip(9) := J1(u1 + 9u,ylu). 

Clearly ip attains its minimum at 9 = 0. Moreover, Proposition 1 implies that 

y,u - y, strongly in C([0, T]; H1'2^^)) as 0 -+ 0 and 

ylu(T,x)-yi(T,x) = y7U(t,x)-y7(t,x) = Cu ye > Q 

9 T ' 6 
Employing these results and the classical mean value theorem, we come up with 

rip(9)-ip(0) 
0<liminfyv     „ 

~   0->o 9 

= liminf h f y/(y7(T,x) + 9^(ylu(T, x) - Vl(T, x)))(ylu(T, x) - y7(T,x))dx 
9—»0     ij Jft, 

iQ dy 
JJ j-(t, x, y1 + 92(yiu - y-/))(y-ru ~ yy)dtdx 
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f f öh 
+ / / — (t, x, u7 + 6z0u)9udtdax 

+ f (||w7 + 0U- ü\\pL^r) + ... + ||u7 - ü||£l(
2
r))( / 0u(2u7 - 2ü + 8u)dax)dt 

+ 1JJ ^a^y^ + a-y(yi))a'i^yi + ^(2/7« _ Vt^iVm - yjdtdx] 

where 0j = 6i(t,x) E [0,1] a.e. in Q for i = 1,2,3,4. Observe that 9i(yiu — 
y-f) —> 0 strongly in L2(Q) as Ö —> 0 for i = 1,2,3,4 and that a7(y7„) + a7(y7) G 
L2(0,T;L2(fi)). Then by using assumptions (i)-(iii) and the Lebesgue dominated 
convergence theorem, we obtain 

0< / (p'(y1{T,x))CTudx+ // (—(t,x,y7) + 2-ya'7(y^)a^(y1))£udtdx 
Mii\ 'D J JQ oy 

^ r r dh rT f 
+        ~K~(t, x, u7)udtdax + 2p      ||u7 — ö||^2,rj( / (u7 — u)udax)dt. 

The latter implies (3.10) and ends the proof of the theorem.        □ 

4. Necessary Optimality Conditions with State Constraints 

In the last part of this paper we develop a limiting procedure to derive neces- 
sary optimality conditions for the original Dirichlet boundary control problem (P) 
with pointwise state constraints. This procedure is based on passing to the limit in 
necessary optimality conditions for the approximating problems (P7) by taking into 
account the strong convergence results established in Section 3. Analyzing these nec- 
essary optimality conditions (Theorem 6), we can observe that to pass to the limit 
therein one needs to get a uniform bound for the perturbation term 7a7(-)a7(-) in 
an appropriate space. Such a bound does not follow from the previous consideration 
without additional assumptions. To furnish this let us impose a constraint qualifica- 
tion condition (CQ) for the state constraints in problem (P). In what follows || • ||oo 
and || • ||i denote the norms in L°°(Q) and Ll(Q), respectively. 

(CQ) There exist ü G Uad and r\ > 0 such that for all £ € L°°(Q) with ||C||oo < 1 
the mild solution y of (2.1) corresponding to ü satisfies the condition 

a < y(t, x) + rj((t, x) < b a.e. in Q. 

Observe that this qualification condition is different from the classical Slater an- 
teriority one in the corresponding space; compare, e.g., [13]. In particular, (CQ) 
does not imply that the set of feasible trajectories y has nonempty interior in the 
space C([0,T];i?1/2_£(fi)). We refer the reader to [3] and [4] for more discussions on 
the related qualification conditions for the case of parabolic systems with distributed 
controls. 

The next lemma provides the desired uniform estimate that turns out to be crucial 
in our limiting procedure. 

Proposition 7. In addition to the assumptions made above we impose the qualification 
condition (CQ). Then there exists a constant C > 0 such that 

(4.1) ||7a7(y>7(y7)||i<C V7>0. 
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Proof. Given ü in (CQ), let us substitute u = ü - u7 into (3.11). Employing the 
monotonicity of a7(-), one has 

0 < / <p'(y7{T,x))£T(ü - u~,)dx + ff ^(t,a;,y7)£(ü - u7)dtdx 
Jo, J JQ uy 

+        — (£,£,u7)(ü - u7)dtdax 

+ 2p      \\uj(t) - w(t)||^2(2
r)( / (u7 - u)(u - u7)dax)dt 

+ 2 / / 7a7(j/7)a7(y7)(£t2 - Cu^dtdx 

< j( <p'{yi{T,x))(y(T,x) - t/7(T,x))dx + jj^ ^(t,x, y7){y - yjdtdx 

+        —(i,x,w7)(w - u^)dtdax 

+ 2p      \\u7(t) - ö(i)||^2(2
r)( / («7 - ü)(ü - u7)dax)dt 

-2 Jj 7a7(y7)(a7(y7) - a7(y + vO)(Vi ~V~ vC)dtdx 

-2VjJ -ya'^y^a^y^Cdtdx 

< jf if/(uy(T, x))(y(T,x) - y7(T, x))dx + jjf ^(t, x,y7)(y - y^dtdx 

+        -—(t,x,u7)(ü-u7)dtdax 

+ 2p J   \\uy(t) - ü(t)\\p^r){    (u7 - ü)(ü - u7)dax)dt 

- 277 jj ya'7(yi)ay(yy)(dtdx VC G L°°(Q) with ||C||oo < 1- 

Now taking into account Theorem 5, we can find a constant C > 0 independent of 7 
such that 

II 7Q;(2/7)a7(2/7)C^x < C V7 > 0 VC G L°°(Q) with ||C||OO < 1. 

This estimate yields (4.1) and ends the proof.        D 
Let us denote by ba(Q) the space of bounded additive functions (generalized mea- 

sures) on subsets of Q that vanish on sets of the Lebesgue measure zero. It is well 
known that this space can be identified with the dual space to L°°(Q) in the following 
sense: for each A e (L°°(Q))* there is a unique A G ba(Q) such that 

A(io) = II w\(dtdx) Vw G L°°(Q). 

In the sequel we do not distinguish between A G (L°°(Q))* and its counterpart 
A G ba(Q). Recall that (supp A) means the support set for A G (L°°(Q))* where this 
measure is not zero.  In what follows the convergence along a generalized sequence 



B.S. Mordukhovich and K. Zhang 233 

means the convergence of a net in the weak* topology of the space (L°°(Q))* where 
the topological and sequential limits are different. 

For the optimal trajectory y(t, x) to problem (P) we define the set 

Qab ■= {(*, x)eQ\ y(t, x) = aoi y(t, x) = b} 

where the state constraints (2.2) are active. This set plays an essential role in the 
results below. 

Proposition 8. Under the assumptions made in Proposition 7 there exist A G (L°°(Q))* 
with supp A C Qab and a generalized sequence of {7} along which 

2'ya'1(y~f)a~/(y~/) —> A weakly* in (L°°(Q))* as 7 —> 0. 

Proof. We just sketch the proof referring the reader to [16] for more details in a 
similar setting. Let us define 

A7(w) := 2 / / 'yail(y7)a7(y^)wdtdx Vw G L°°(Q) 

for each 7 > 0. Proposition 7 ensures the uniform boundedness of {A7} in (L°°(Q))*. 
Due to weak* compactness of the unit ball in a dual space we find A G (L°°(Q))* and 
a generalized sequence of {7} along which 

(4.2) limA7(iy) = lim 2 ff -ya'^yja^yjwdtdx = A(w) Vw G L°°(Q). 

It remains to show that supp A C Qab- To this end we observe that 

meas({(£,x) G Q | y(t,x) < a or y(t,x) > b}) = 0. 

Thus assuming that supp A <£ Qab, one has a set Q with the properties 

(4.3) meas(Q) > 0,   X(Q) ^ 0,   and Q C {(t,x) G Q \ a < y(t,x) < b}. 

Now arguing in the same way as in [16], we find a nonnegative function c(p) such 
that c(p) —> 0 when p —> 0 and 

|A(iu)| < c(p) Vw G L°°(Q),  supp wcQ 

for all p sufficiently small. This yields 

A(w) =0Vw£ L°°(Q),  supp wcQ 

which contradicts (4.3) and ends the proof of the proposition.        □ 
Now we are ready to derive necessary optimality conditions for optimal solutions 

to (P) by passing to the limit in (3.10). Due to the weak* convergence result of 
Proposition 8 we need to show that the operator C defined by (2.5) is continuous from 
L°°(S) into L°°(fl) (note that this is different from Proposition 1). The next theorem 
establishes this property and provides the desired necessary optimality conditions for 
the original state-constrained problem (P). 
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Theorem 9. Let (ö, y) is an optimal solution to problem (P) under all the assumptions 
made above. Then there is a measure A G (L°°(Q))* with supp A C Qab such that 

0< [[[(£W(yW,x)+£*(?f(t,x,y)) + ^(t,x,ü)](u- ü)dtdax 

(4.4) y 

+ ff (u- ü){C*\){dtdax) Vu e Uad. 

Proof. Let {(u7,y7)} be a sequence of optimal solutions to problems (P7) that 
strongly converges to (ü, y) due to Theorem 5 satisfying the necessary optimality 
conditions in Theorem 6. It follows from (3.10) that 

0 < jj^CWivMt^) + £*(j-{t,x,yi) + 27a7(y>7(2/7)) 

(4.5) +—(t,x,u~/)](u-uy)dtd(Tx 

+ 2p      ||u7 - w||i2(
2
r)( / (u-y — u)(u- uy)dax)dt Vu G Uad- 

Our purpose is to pass to the limit in (4.5) as 7 -> 0 along a generalized subsequence. 
Due to Proposition 1, Theorem 5, and the well-known continuity of the operator 
C* : L2(0,T; L2{Q)) -> L2(0,T; L2(T)) (see, e.g., [11]) we have <pffa(T, •)) G L2{Q) C 
H-^2+£{ü) for all 7 > 0 and 

y^[(£^'(y7))(t,x) +C*(p-{t,x,yJ) + -^(t,x,Ul)](u-u7)dtdax - 

JJ^£*T<p'(y))(t,x) + £*(^-(t,x,y)) + — (t,x,ü)}(u - u)dtdax \/u G Uad. 

dy 

(99u      -^^  ,  dh 

[dy 

Since the last term in (4.5) converges to 0, it remains to show that 

(4.6) Jj (u - u7)£*(27a7(y7)a7(y7))didax -» JJju - u)(C\){dtd<jx) 

as 7 -> 0 for any u £ Uad. Due to Proposition 8 property (4.6) immediately follows 
from the weak* continuity of the operator £* : {L°°(Q))* -» (L°°(E))*. In turn, this 
weak* continuity of the adjoint operator is a direct consequence of the strong conti- 
nuity of the operator £ in (2.5) considered from L°°(E) into L°°(Q). To justify the 
latter property we follow [16] and invoke some results from the theory of generalized 
solutions to parabolic equations. 

Let v G L2(E) be a boundary condition in (2.1). According to [12, Theorem 9.1], 
there is a unique y(v) G L2(Q), called a generalized solution to (2.1), such that 

r r dz f f     Ov 
(4.7) jjQ y(v)(-¥t + A*z)dtdx = - J^ v^dtdax 

Vz£{z£ H2'\Q) I z{t, x) = 0, (t, x) G X, z(T, x) = 0} 

where vA is an outer normal to T associated with the operator A. 
Let v G L°°(S) and let y = £vbe the corresponding mild solution to system (2.1). 

We are going to show that such y coincides with the generalized solution to (2.1) in 
the sense of (4.7). Since L°°(E) C L»{0,T; i2(r)), we may consider v as an element 
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of 1/(0, T; L2(T)) and use the fact that 2>(£), the space of C°° functions on E with 
compact supports, is dense in LP(Q,T;L2(T)). This gives a sequence {vn} C £>(E) 
such that 

v„ —» u strongly in Lp(0, T; £2(r)) as n —> oo. 

Since for each i>„ G 22(E) system (2.1) has a unique classical solution yn, we 
automatically get that yn = Cvn and it satisfies (4.7). Moreover, it follows from 
Proposition 1 with e = 1/2 that 

\\£v - 2/n||c([o,Tj;£2(fi)) = 11^ ~ ^n||c([o,T];L2(n)) -> 0 as n -> 00. 

Taking into account all these facts, we have 

1 //><-!+^^+ILvlkdtd^ 
< | /£(£« - *.)(-§ + A'z)dtdx\ + | //s(t, - vn)^-dtdax\ 

dz 
< \\£v - 2/„||c([0,T];Z,2(fi))|| - TjT + A* z\\Iß(piT;Iß{n))T1'2 

+ \\v - vn\\LP{QtT.L2^))\\ — \\L2{0tT.L2{T))T
1/q -> 0 as n -> oo 

_      2(p-l)   m, 
where 5 := —-. Thus we obtain 

p-2 

11 £v(—^ + A*z)dtdx = ~ f [ v-^-dtdax 

Vze{zG H2'\Q) I z(t,x) = 0, (t,x) G E, z(7» = 0}. 

The latter means that the mild solution y = Cv is also a generalized solution to (2.1) 
for any v G Z,°°(E). Using the uniqueness of generalized solutions and the factüiat 
the generalized solution operator is a continuous map from L°°(E) into L°°(Q) (see, 
e.g., [12, pp. 205-206]), we conclude that the linear operator C is continuous from 
L°°(E) into L°°(Q). This completes the proof of the theorem.        D 
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ABSTRACT. Consider the heat equation with a nonlinear function a in the boundary con- 
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1. Introduction 

This paper deals with the connection between second order optimality conditions 
and stability estimates for the identification of nonlinear heat transfer laws. The iden- 
tification problem is formulated as an optimal control problem where the unknown 
heat exchange function plays the part of the control. The unknown function a is 
assumed as a function of the temperature u. The control system under consideration 
is governed by a semilinear parabolic equation, hence the control problem belongs 
to the class of nonconvex optimization problems. In contrast to parabolic control 
problems with convex objective functionals and linear equations, where the list of 
references and optimality conditions is very extensive, only a few investigations have 
been devoted to the case of nonlinear parabolic equations. In nonconvex problems, 
sufficient second order optimality conditions at the optimal point are a substitute for 
the convexity. The theory of sufficient second order conditions for twice differentiable 
extremal problems in function spaces is known to be more rich and interesting than 
that for problems in finite-dimensional spaces. This is due to the so-called two-norm 
discrepancy expressing the noncompatibility of the norms needed for second order 
optimality condition. This difficulty was resolved successfully by Ioffe [6] and Maurer 
[7]. The theory was extended on a class of parabolic boundary control problems in the 
papers of Goldberg and Tröltzsch [4],[5]. But the investigating type of identification 
problems has an other complicate structure. Therefore it is one goal of this paper to 
show that it is impossible to get similar conditions for the identification problem. 
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To ensure a sufficient optimality condition it is often required that there exist 
terms in the objective which depend directly on the control. For that reason the 
usual way is using a Tikhonov-regularization. But the Tikhonov-regularization is 
also the most popular way to get well-posedness and stability of inverse problems, see 
Tikhonov/Arsenin [13], Tikhonov/Goncharskij/Stepanov/Yagola [14]. Hence there is 
a close connection between sufficient second order condition and stability in this well- 
investigated class of boundary control problems. But this approach has disadvantages 
for the application to the nonlinear identification problem. A natural way to handle 
the nonlinear identification problem consists in using a compact set of admissible 
controls a (that means "admissible laws"). For practical applications it is often easy 
to bound the maximal growth of the heat exchange coefficient with respect to the 
temperature. The compactness of the set of admissible controls is the main prop- 
erty to get statements about stability and well-posedness in suitable chosen function 
spaces, see Rösch [8]. In this approach we have no regularity term. By the way, it is 
difficult to find a proper function space for the regularity term for the identification 
of a heat exchange coefficient depending only on the boundary temperature. These 
facts generate an own specific of identification problems. The compactness of the 
admissible control set relieves the derivation of several properties. Otherwise, with 
the absence of the Tikhonov-term is also absent the natural quadratic convexity term 
of the objective with respect to the control. Another difference is caused in the non- 
standard structure of the control-state-mapping. Usually the optimality conditions 
need no derivatives of the control, but in our case every differentiation of the ob- 
jective uses derivatives of the control a. For that reason it is necessary to require 
C2-regularity of the control in order to get second order conditions. 

In this paper we want to discuss second order optimality conditions for the iden- 
tification problem and the connection to stability estimates. The optimal control 
problem we are going to investigate is to minimize the functional 

T 

(1.1) tf(a)   =   J J(u{t,x)-q(t,x)fdSxdt, 
o r 

subject to 

Fin 
^(t,x)   =   Axu(£,x)on(0,T]xfi 

(1.2) u(0,x)   =   u°(x) onfi 

^(t,x)   =   a(u(t,x))(#-u(t,x)) on {0,T] xT 
on 

where the control a is taken from the set 

Uad   :=   {aeC2[-d1,'d2},0<m1<a{u)<Mum2<a'{u)<M2, 

m3 < a"(u) < M3} 

In this setting, Q C Rm is a bounded domain with C°°-boundary T, T > 0 a fixed 
time, ■& a fixed temperature and q e L2((0,T) x T) is a given function of "measure- 
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ments". i?i and 1?2 are defined by 

i?i   =   min(i?, inf u°(x)) 

i92   =   max(i9, supu°(a;)). 
xeQ 

Interpreting the process as a heating problem, the variable u means the temperature 
of the material, u° the initial temperature, i? the constant temperature of the sur- 
rounding medium, and a the unknown heat transfer function, playing the part of the 
control. 

2. Preliminary results 

In this section we introduce some notations and recall known results on the be- 
haviour of the parabolic system (1.2), which belongs to the class of semilinear prob- 
lems. For convenience we shall apply the theory of analytic semigroups. We shall 
heavily rely on results by Amann [1],[2] for semilinear parabolic problems. The as- 
sumptions and preparations we shall need here are nearly the same as in Rösch/ 
Tröltzsch [12], where well-posedness of the parabolic system is proved. 

In all what follows we work in Sobolev-Slobodeckij spaces Wp°"(Q) and W^{ü) 
with 

— <2a <2a <! + -. 
V V 

Note that this inequality ensures the continuity of the regarded functions. The solu- 
tion of the heat equation u is looked upon in the Banach space 
C([0,T], W^(Q)) provided that the initial value u° belongs to W^(Q). 

Let A be a linear, positive, and elliptic differential operator. Then the parabolic 
equation 

du 
m = -Au 

u{0)   =   u° 

subject to homogeneous boundary conditions gives rise to an analytic semigroup of 
linear continuous operators denoted by S(t). 

Following [12] we define A: Lp(fi) D D(A) —> Lp(fi) by 
D(A) = {w e W^itt) :     dw/dn |r= 0},    Aw = (-A +I)w ioi w G D{A). 
Then the initial value problem 

u'(t)   =   -Au(t) 

u{0)   =   u° 

has the unique solution u(t) = S(t)u°. The semigroup S(t) generated by -A, S(t) = 
"exp(-At)" is an analytic semigroup of linear continuous operators in LP(Q). 

For solving an initial value problem with an inhomogeneous boundary condition a 
special solution of the corresponding elliptic boundary value problem is needed. Let 
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g 6 LP(T). The mapping, which assigns to g the solution v of the elliptic boundary 
problem 

Av - v = 0 

(2.1) dv 

on 

is denoted by N, i.e.  v = Ng.  Transforming the heat equation with u = we1, we 
obtain 

Aw{t,x)-w(t,x)   =   ~Ef(t,x)   on (0,T]  xfi 

(2.2) w{0,x)   =   u°(x)    onfi 

^(M)   =   a{w{t,x)et){'d-w{t,x)et)e--t   on (0,T] x Y. 
on 

Now the semigroup approach can be applied. The operator —A is known to generate 
a strongly continuous and analytic semigroup {S(i),    t > 0} of linear continuous 
operators in Lp(Q), see Friedman [3].   N is a continuous mapping from LP(T) to 
V^p

s(fi) for all s < 1 + 1/p, cf. Triebel [15]. 
Regarding the function w as an abstract function w = w(t) with values in the 

Banach space Wpa(Q) the nonlinear Bochner integral equation 

t 

(2.3) w{t) = I' AS{t - S)NB{TW(S)) ds + S(t)u° 
o 

is obtained. We refer to Amann [1],[2]. In this equation, r denotes the trace operator 
and B is the Nemytskij operator defined by 

(2.4) B(v)(t, x) = a(v(a;)e')(0 - v{x)et)e~t,    v G C(T). 

Here the trace operator maps W^a(Q) into C(T). Inserting the backward transfor- 
mation w = e~*u, we get in turn 

t 

(2.5) u(t) = f AS{t - s)7Ve('-s)a(ru(s))(i? - ru{s))ds + e*5(t)u°. 
o 

For each a G Uad we get a unique solution u G C°'6([0,T],W^(Q,)).  This solution 
satisfies the maximum principle 

(2.6) i?i <     u(i,x)     <     1?2- 

Let us slightly simplify the notation. Denoting the kernel of the integral in (2.5) by 
k(t - s) := AS(t - s)Ne^~s\ we get 

t 

(2.7) u{t) = fk(t- s)a(Tu(s))($ - Tu(s))ds + e'S^u0. 
o 

The right hand side of the Bochner integral equation (2.7) depends only on the 
boundary values of u. For that reason, we shall investigate this equation only on 
the boundary.   Therefore, it is convenient to introduce the trace of u by x = TU 
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with r : C°'s([0,T], W^a(ü)) H^ C([0,T] X F) and to consider the boundary integral 
equation 

t 

(2.8) x(t) = r (kit- s)a(x(s)){d - x{s))ds + re*5(i)u°. 
o 

Next we dehne a mapping $ by 

(2.9) ($a)(t) = x{t), 

where x(t) is the solution of the boundary integral equation (2.8). It is also possi- 
ble to work with weak solutions under reasonable assumptions, but in this case the 
derivation of several results is much more complicated. For the reader who prefers 
to work with other techniques we will write all equations in the form of PDE. Never- 
theless, the solutions are assumed as solutions of the corresponding Bochner integral 
equation. 

In Rösch [9] it is proved that $ is Frechet differentiable from C1 [#i, tf2] to C([0, T] x 
T) at a point a0. Furthermore, let v be the solution of the initial boundary value 
problem 

ßv 
—(t,x)   =   A^(i,x)on(0,T]xO 

(2.10) v{0,x)   =   Oonfi 
dv 
T-(t,x)   =   (a'0(u0(t,x))(-&-u0(t,x))-a0(u0(t,x)))v 

+a(uo{t,x))(d - uo(t,x)) on (0,T] x F. 

Then the Frechet derivative $'(a0)a is the trace of the solution v on the boundary T. 
We expose the dependence of v with respect to the direction and write for instance Vß 
which means v is the solution of (2.9) for a = ß. This notation is useful for derivation 
of the second derivative which follows in the next section. 

3. Second Frechet derivative 

In this section we want to prove that the mapping $ has a second Frechet derivative 
which is the base of the second order optimality conditions. 

Theorem 3.1 (Existence of a second Frechet derivative). $ has a second Frechet 
derivative as mapping from C2[i?i,#2] to C([0,T] x F) in every point a0 € Uad. 
Moreover, let w be the solution of 

-^-(t,x) = Axw(t,x) on (0,T]xQ 

(3.1)   w(0,x) =0onfi 

~^-{t,x) = (a'oiuoit^))^ - u{t,x)) -2a'0(u0{t,x)))vß(t,x)v-f{t,x) 
on 

+(a'0(u0(t, x))(# - u(t, x)) - a0(u0(t, x)))w(t, x) 

+("f'(u0(t,x))(ti - uo(t, x)) - 7(w0(i, x)))vß(t, x) 

+{ß'{u0(t,x))(ß - u0(t,x)) - ß(u0(t,x)))Vl(t,x)on (0,T]xT. 
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In this setting u0 is the solution of (1.2) for a = a0. Then the trace of the solution 
w is the second Frechet derivative of $ at the point a0 in the directions ß and 7, that 
means <E>"(a0)[/?,7] = TW. 

Proof: To prove this theorem we investigate two admissible controls a0 and cui = 
a0 + e ■ 7 with corresponding solution u0 and Mi of (1.2) and corresponding first 
Frechet derivative v0 and Vi in direction ß (see (2.10)). Without lost of generality 
let H7II = 1. Then we have ||c*i - «oil = £- The goal of the next steps is to show 
that the remainder term has the property vi-v0-s-w = o(e). Now we discuss the 
difference 6v = v\ — v0 which solves the parabolic problem 

j^{t,x)   =   Ax6v{t,x)on(0,T}xQ 

(3.2) Sv(0,x)   =   Oonfi 

-K^-(t,x)   =   (a'1{u1{t,x))('d-u1(t,x)) -ai(ui(i,a;)))ui 

(3.3) -(a'0{uo(t,x))(d - tM>(t,x)) - a0{u0(t,x)))vQ 

+ß{u1(t,x)){-d-ul(t,x)) 

(3.4) -ß(u0(t, x))(0 - u0(t, x)) on (0,T] x V. 

It is easy to see that only the boundary condition is interesting. For that reason we 
discuss only this part in the next. To shorten the notation we drop the arguments t 
and x. First we discuss term (3.4): 

/?(«i)(0-ui)-/?(uo)(0-uo) = ß(u1)(^-u1)-ß(u1)(-d-u0) 

+ /3(ui)(0-uo)-/3M(0-«o) 
(3-5) = -ß(u1)(u1-u0) + (ß(u1)-ß(u0))^-u0) 

= (-ß(uo) + ß'(u0)($ - u0))v^e + o(e) 

Now we discuss term (3.3): 

(ai(ui)(i? - Mi) - ai(ui))vi - (a'0(uo)(ti - u0) - a0(u0))v0 

(3.6) = (ai(ui)(i? - MI) - ai(ui))vi - (ai(ui)($ - u0) - ai(u0))fi 

(3.7) +(ai(«i)(t? - «o))«i - (ai(«o)(l? - «o))«i 

(3.8) +(a[(u0)('d - Mo) - ai(u0))vi - (a0(M0)(tf - M0) - a0(Mo)M 

(3.9) +(a0(w0)(tf - Mo) - CHO(MO))UI - (a0(w0)(tf - «0) - a0(u0))v0 

Next we handle the term (3.6)-(3.9). Term (3.8) is easy: 

(ai(Mo)(tf - Mo) - ai{u0))vi - (a'0(u0)(ö - u0) - a0(M0))ui 

(3.10) = e(Y(uo)(0 - MO) - 7(«o))«i 
= £(7'(M0)($ - M0) - 7(«O))M/3 + o(e) 

For term (3.7) we get 

(ai(ui)(tf - M0))VI - (ai(Mo)(i? - M0))«I = (ai(Mi) - ai(u0))(i? - «o)«i 

(3.11) = a" (u0)(i? - M0)w7fi£ + o(e) 

= a0'(M0)(i? - uo)v7vße + o(e) 
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Similar we deal with term (3.6) 

(ai(ui)(i? - ui) - ai(ui)>i - (ai(ui)(tf - u0) - ai(uo))^i 

(3.12) = (-ai(ui)(ui - u0) - (ai(tii) - ai(u0)))ui 

= — 2a'1(ui)v1Vße + o(e) 

Now we discuss the term 

(3.13) r = Vi — v0 — e ■ w 

which is the remainder term. This remainder solves a parabolic problem. Using the 
equations (3.5) and (3.10)-(3.12) we get: 

— {t,x) = Axr(t,x)on{0,T}xÜ 

(3.14) r(0,x) = 0onft 
dv 
— (t,x) = (a'0(u0(t,x)){#-u0(t,x))-a0{u0(t,x)))r+o(e) on (0,T]xr. 

For that reason r = o(e) holds and $ has a second Frechet derivative. D 

4. Second order conditions and stability estimates 

The two times Frechet differentiability of $ is the key point to formulate second 
order conditions. First of all we recall the necessary first order condition. In Rösch 
[10] we find the two formulations 

T 

(4.1) *'(ao)\ß\ =2 J j vß{t,x)(u0(t,x) - q{t,x))dSxdt > 0 
o r 

and 

T 

(4.2) *'(ao)\ß\ =2j Jß(uo{t,x))(0-uo(t,x))yo(t,x)dSxdt>O. 
o r 

where t/o is the solution of the adjoint system for a = a0, u = UQ 

-^(t,x)   =   Axy(t,x)on(0,T}xQ 

(4.3) y(T,x)   =   Oonfi 

j£(t,x)   =   (a'{u{t,x)){#-u{t,x))-a(u(t,x)))y 

+u(t, x) - q(t, x) on (0,T] x I\ 

Based on theorem 3.1 about the second Frechet derivative it is easy to formulate 
second order optimality condition. 
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Theorem 4.1 (Necessary second order optimality condition). Let a0 be an optimal 
control with associated state u0. For all admissible directions ß = a - a0, a G Uad 

with *'(a0)[/3] = 0 the necessary second order condition 

T 

(4.4) V"(ao)\ß,0\ =2J Jwßß(t,x)(u0(t,x) - q(t,x)) + vß(t,x)2dSxdt > 0 
o r 

holds. 

In this setting wßß is the solution of (3.1) with and 7 = ß. The proof is very simple 
and for that reason we resign to sketch it here. 

Proposition: It makes no sense to formulate sufficient second order conditions. For 
very simple cases such properties can not hold. 

Let us now discuss sufficient second order optimality conditions. Usually sufficient 
optimality conditions require one or both of the conditions 

(4.5) *'(«o)[/3]   >   6\\ß\\ 

(4.6) *"{a0)[ß,ß]   >   8\\ß\\2 

for all admissible direction ß and a positive 6. First the norm of ß is the norm of the 
differentiation but in several applications it can be weakened with a other norm. 

We will see now that such conditions cannot hold for the simplest case. For that 
purpose we choose an example for which is *(a0) = 0, that means there exists an 
exact solution, thus we can replace the "measurements" q by the corresponding state 
u0. Using formula (4.1) we get easy V(a0)[ß] = 0 for all directions ß. For that reason 
a condition of type (4.5) cannot work here. 

We assume now that a condition of type (4.6) holds which a suitable norm. 

(4.7) *"(a0)[ß,ß}>8\\ß\\2 

We investigate an admissible control a = a0 + ß with corresponding state u. Using 
the Taylor expansion we have 

tt(a) = tt(a„) + *'(ao)[/?] + \^>"{a0)[ß,ß] + o{\\ß\\2c.) 
(4.8) 

= ^"(a0)iß,ß] + o(\\ß\\c*) 

If we have in (4.6) the C2-norm, then we get 

(4.9) tf (ao) > S\\ß\\2c2 

for a positive S. Using the definition of *, 

(4.10) \W - u0\\lmT]xT) > 5\\ß\\2C2 

holds. With a new 6 > 0 we get 

(4.11) ||u - «o||L2([o,T]xr) > S\\® - ao||c2 

We can interpret inequality (4.11) as a stability estimate. For the simple case Q = 
[0,1] we find several stability estimates in Rösch [11]. An essential point in this paper 
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is the discussion under which assumptions estimates of the more general type 

(4.12) II«-'"oil >c||a-a0|r 

can be hold. First of all the norm of the difference of the controls has to be evaluated 
only on a smaller set as [tfi,^] the so-called reference set. Variations outside of this 
set have no influence of the state. This fact compiles several investigation but it is 
not a crucial point. We only recall here the definition of reference sets. 

Definition: Let a G Uad and u the corresponding solution of (1.2). 
The set M := {ü : ü = u(t, x), t G [0, T] x G T} is called reference set of a. 

In the illustrative example and the concluding remark of this paper we can see that 
for a very simple example we can not expect Lipschitz type estimates 

(4.13) ||u —«oil > c||a- Q0|| 

with the same norms for u and a (for instance C or L2). 
Inequality (4.11) requires much more than that namely a Lipschitz estimate of the 

L2-norm of u with respect to the C2-norm of a. May be it is possible to weak the 
norm on the right-hand side of inequality (4.11). To ensure that all terms of the 
second Frechet derivative make sense we must necessarily require that the increment 
a—a0 belongs to C0,1. Thus the L2-norm or a weaker norm for a—a0 is unimaginable. 

Summarizing these deliberations, we notice that already for simply cases neither 
the sufficient estimates of type (4.5) nor sufficient estimates of type (4.6) hold. Nev- 
ertheless, the investigation of the second derivative delivers useful results. First of 
all we have the necessary second order condition. Second we are able to construct 
second order descent algorithm. In this context second order means using second 
order information not quadratical convergence. 

In this context it seems to be a way out to use an additional Tikhonov-term. But 
this way has disadvantages. Because of the dependence of the temperature of a we 
have to discuss what means ||a|||2. If we choose the norm over the reference set (for 
instance L2(M)) then we get the problem that every a generates its own reference set. 
For that reason the norm is not differentiable. The use of ||a(«)||L2((o,T)xr) geneates 
additional differentiation term because of the dependence from a. Possibilities to 
overcome this problems could be the use of ||a(g)IU2((<vr)xr) or an iterative Tikhonov 
regularization ||a(u„)||x,2((o,T)xr)- 

The investigations of this identification problems shows that for such problems it 
is necessary to find new ways. It is imaginable that the function of the sufficient 
second order condition can be fulfilled by a stability estimate of the type (4.12). In 
[11] we find several estimates of this form for the one-dimensional case. For instance 
it is possible to get the inequality 

(4.14) ||u - U0||L2 > c||a - ao II C(M) 

where M denotes the reference set of a0. By means of such properties and the 
knowledge of the second order information it should be possible to construct numer- 
ical algorithms and to prove convergence rates. These are the goals of the future. 
The investigation of this papers show that the standard way can not be gone for this 
type of identification problems. 
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ABSTRACT. A model-based LQR method for controlling vibrations in cylindrical shells is 
presented. Surface-mounted piezoceramic patches are employed as actuators which leads 
to unbounded control input operators. Modified Donnell-Mushtari shell equations incorpo- 
rating strong or Kelvin-Voigt damping are used to model the system. The model is then 
abstractly formulated in terms of sesquilinear forms. This provides a framework amenable 
for proving model well-posedness and convergence of LQR gains using analytic semigroup 
results combined with LQR theory for unbounded input operators. Finally, numerical ex- 
amples demonstrating the effectiveness of the method are presented. 
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1. Introduction 

The use of shell models to describe structural dynamics is pervasive in applications 
ranging from noise reduction in aircraft to flow control in flexible pipes. While general 
shell equations can be used in a variety of geometries, they all share the property that 
component displacements are coupled due to the geometry. This leads to significant 
challenges when developing appropriate models and approximation techniques, and 
constructing effective controllers. 

In this paper, we consider cylindrical shells due to their prevalence in applications. 
Control is provided by piezoceramic patches bonded in pairs to the surface of the shell. 
These transducers provide significant actuating capabilities due to the piezoelectric 
effect in which input voltages generate strains in the patches. Utilization of the 
converse piezoelectric effect (strains produce voltages) also allows the patches to be 
employed as sensors. When combined with their light weight, space efficiency and 
reasonable cost, these properties make the patches highly effective control elements 
in a variety of applications. Prom a mathematical perspective, the use of surface- 
mounted piezoceramic patches leads to unbounded control input operators. 

*This research was supported in part by the National Aeronautics and Space Administration 
under NASA Contract Number NAS1-19480 while RCS was a visiting scientist at the Institute 
for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, 
Hampton, VA 23681. Additional support was also provided in part under NASA grant NAG-1-1600. 
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Experimental work has already demonstrated the potential for success when em- 
ploying the patches as actuators in applications involving cylindrical shells [8, 13]. 
However, these initial investigations have not, in general, utilized the full potential 
of the patches due to limitations in hardware, models, approximation techniques and 
control laws. For example, a common means of approximating shell dynamics to yield 
systems which are ultimately used to calculate control gains is through modal expan- 
sions [10]. However, closed form expressions for the modes can be determined only 
for a limited set of models with severely restrictive boundary conditions. The use of 
incorrect modes when calculating control gains can lead to loss of control authority 
and possible controller instabilities. 

In this paper, we present a model-based method for controlling shell vibrations. 
For simplicity, the Donnell-Mushtari shells equations with Kelvin-Voigt damping are 
used as a model (the assumption of strong or Kelvin-Voigt damping is reasonable and 
typical for many shell materials such as aluminum). The methods are general, how- 
ever, and can be applied to higher-order models (e.g., Byrne-Flügge-Lur'ye model) if 
the application warrants. A general Galerkin method based on splines is then used to 
discretize the infinite dimensional system. Through the choice of basis, the method is 
significantly more flexible than general modal methods when considering the bound- 
ary conditions and material nonhomogeneities which arise in typical applications. 

The model and approximate system are then employed in an LQR full state feed- 
back theory to obtain feedback gains and, ultimately, controlling voltages to the 
patches. While full state measurements are not available using current instrumen- 
tation, and hence the techniques cannot directly be implemented in experiments, 
they provide an important first step in the design of effective compensators based 
on state estimates calculated using a limited number of observations (see [5]). The 
consideration of the LQR performance also illustrates properties of the system and 
model-based control techniques and facilitates investigations regarding issues such as 
patch number and configuration. Finally, the consideration of the problem provides 
a step toward the development of model-based controllers for fully coupled structural 
acoustic and fluid/structure systems involving cylindrical shells. 

The strong and weak forms of the Donnell-Mushtari shells equations are outlined in 
Section 2. In presenting this model, care is taken to include both passive (material) 
and active (actuator) contributions due to the patches. An abstract form of the 
model, based on sesquilinear forms, is also presented. This provides a natural setting 
to prove model well-posedness and convergence properties of the LQR control law. 
LQR full state feedback laws for systems with no exogenous force or forces which 
are periodic in time are presented in Section 3. In the former case, convergence of 
the approximate suboptimal gains to the optimal gains for the infinite dimensional 
system is proven using analytic semigroup theory in combination with LQR results for 
unbounded control input operators. A Fourier-Galerkin method for approximating 
the system dynamics is outlined in Section 4, and the effectiveness of the LQR method 
for periodic forces is demonstrated through a numerical example in Section 5. This 
example demonstrates that through the use of the model-based methodology with 
general Galerkin approximations, significant attenuation in shell vibrations can be 
obtained using piezoceramic patches. 



R.C.H. del Rosario and R.C. Smith 249 

2. PDE Model 

The system under consideration consists of a thin cylindrical shell with surface- 
mounted piezoceramic patches. It is assumed that the patches are mounted in pairs 
with edges aligned with the circumferential and longitudinal axes of the shell. The 
edges of the shell are taken to be fixed in accordance with common experimental 
clamping techniques. 

Y^ 

D 

D 

ith patch 

(xi,6i) 

D 

X± 

□ 

D 

Figure 1. Thin cylindrical shell with surface mounted piezoceramic patches. 

To specify the geometry for the corresponding model, we consider the longitudinal 
direction to be aligned along the ir-axis as depicted in Figure 1. The displacements 
of the middle surface in the longitudinal, circumferential and transverse directions 
are denoted by u, v and w, respectively while the length, thickness and radius of the 
shell are denoted by £, h, R. The region occupied by the middle surface is denoted by 
T0. Finally, the shell is assumed to have mass density p, Young's modulus E, Poisson 
ratio v, Kelvin-Voigt damping coefficient cD and air damping coefficient ß. 

Actuator and/or sensor capabilities are provided by s pairs of surface-mounted 
piezoceramic patches. It is assumed that all the patches have thickness hpe, Young's 
modulus Epe, Poisson ratio upe and Kelvin-Voigt damping coefficient cDpe. Further- 
more, it is assumed that the glue bonding layer provides negligible contribution to the 
structural dynamics (the reader is referred to [3, 5] for details concerning the incor- 
poration of differing patch characteristics and bonding layers in the ensuing models). 
The region covered by the ith patch pair, with edges at xXi, x2i, On, 92i, is delineated 
by the characteristic function 

Xpei(x,9) = 

The indicator function Spei(x, 

Sifi(x) = 

1     ,   x < (xu + x2i)/2 

0     ,   x = (xu + x2i)/2 

-1   ,   x > (xu + x2»)/2 

- ,     xu < x < X2i , 
) ,    otherwise . 

= Slfi(x)Si,2(0) , where 

51>2(0) = 

1 , 0<(0u + 0a)/2 
0 , 9 = (8u + 92i)/2 

-1   ,   6 > (6U + d2i)/2 
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delineates the sense of the forces generated by the ith pair. The symmetry of 
the function arises from the property that for homogeneous patches having uni- 
form thickness, equal but opposite strains are generated about the point \Xi,6ij = 

((xli + x2i)/2,(6li + 02i)/2). 

2.1. Strong Form of the Modeling Equation. We consider here the modified Donnell- 
Mushtari equations 

d*u       8NX     dNBx_ R^d(Nx)pe       (r9) 

(2.1) 

_  ,d2v      dNg Nxg ^ d(Ne)pei c Rphw - ~w ~ R^ = Rqs - S -^S™ ^6) 

d2w dw        82MX      ID
2 Me     9d

2Mx9 Rph—+ 11^-11-^--—-2-^ +Ne 

Rd\Mx)vei  ,   ld\Me)p^ 
dx2 R     de2 

i=l 

as a model for the thin shell dynamics. As detailed in [3, 5, 9], these equations are 
obtained through force and moment balancing with only low order terms retained. 
Here Mx,Me,M$x and Mx8 are internal moments while Nx,Ne,N6x and Nx6 denote 
internal force resultants. External surface forces are denoted by qx,qe,qn whereas 
the external resultants (line moments and forces) generated by the ith patch pair are 
designated by (Mx)pei, (Me)pei, (Nx)pei, (Ne)pei. 

Expressions for the internal force and moment resultants are derived under the 
assumption that stress is proportional to a linear combination of strain and strain 
rate. This yields a model which incorporates Kelvin-Voigt or strong internal damping. 
As detailed in [3, 5], the resultants Nx,Nxg,Nex,Mx,Mxe:Mex derived under this 
assumption are 

(2.2)     Nx   =   -^ (ex + pee) + £ 2E* f (e, + vpeee) xpe,(x, 6) 
1        v j=l   l       Upe 

+^-2 (4 + ve9) + £ ^f (4 + vpeie) XPe;(*, 9) 

N. x6 

Coh      . ^   Cn   hpe   . .       . +W^)£xe + lk^)£x9Xpei{x'e) 

M
*     =     T^n ^(^ + ^) + N        M 2A^x + ^peKe)Xpei{x,0) 

].Z{1. — v ) i=1 Ö{1      Vpe) 

cDh3      ,. . ■.  , v^   2cr>pfi-i   ,.    .       . N       i    n\ 
+T^n 2\ (K* + VK<>) + L on      „2\ (K* + vv^) XpeAX, 9) 

LZ[i — V) i=1 o{l       Vpe) 
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Mx9    =    Mgx = 
Eh3 

24(1 + v) 

,     cDh3 

+ £ 
Epea,3 

\ 3(1 + upe) 

CD„ea3 £ 

TXVeM,S) 

TXVei{x,0) 
24(1 + 1/)       ^3(1 + ^) 

where the constant a3 = (h/2 + hpe)
3 - h3/8 results from integration through the 

thickness of the patch. Expressions for the resultants Ns and Mg can be obtained by 
replacing ex,ee,Kx,Kg in the expressions for Nx and Mx by sg,ex,Ke,Kx, respectively. 
The midsurface strains and changes in curvature for the Donnell-Mushtari model are 

C-rc 

(2.3) 

du 

dx 
£e 

1 dv     w 

Rd0 + R 

dv 
£x0 — 7T~ 

ox 

KX     
d2w 

dx2 Kg = - 
1   d2W 

R2 do2 

1 du 

Ral 

2 d2w 

Rdxdö 

Note that for the undamped shell which is devoid of patches, the resultant equations 
(2.2) reduce to the classical Donnell-Mushtari expressions 

Nx 

Ng 

Eh 

(1 

du     v 

dx + R 

dv 

dö 
■w 

Eh 

(i-u2: 

Nxg = N6x = 

1 dv     w       du 

Rd0 + R + Udx 

Eh 

2(1 + v) 

dv 

dx 

1 du 

RdÖ 

Mx 

Mg 

Mrj 

-Eh3 

12(1 - I/») 

-Eh3 

+ 

12(1 

Mgx = 

dx2     R? de2 

1 d2w       d2w 

R?W + U~dxl2 

-Eh3     d2w 

12R{\ + v) dxde 

(e.g., see [9]). 
To characterize the external or active patch contributions, it is typical to start 

with the assumption that the strains generated by a patch are proportional to the 
applied voltage [3]. Since differing voltages can be applied to the outer and inner 
patches in the pair, we will differentiate between the two with Vu(t) and Vi2(i) used 
to denote the voltages to the outer and inner patches in the ith pair, respectively. 
The proportionality constant relating the generated strain to the input voltage is 
designated by d3i. As detailed in [3], the total external moments and forces generated 
by the patches are 

(Mx)pe = 

{Mg)pe = 

Epe     d; '31 
xPei{x,e) 

2     3R 
Vn- 

02 

2 " 
03_\ 

3RJ 
V;, 

-Epe     dziÜ2 

(2.4) 
1       Z/pe     Atlpe 

X^MWx-Va] 

\Nx)pei — -^ 

{Ne)=: 

—Ene    d; '31 
XPei(x,9)Spei(x,0) -^1 >pe + ^)Vil+[h ■pe 

02_ 

2R 
V, 

-Er,, 
dziXpe^x, 0)Spei(x, 6)[Vn - Va 

^pe 
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where o2 = (h/2 + hpef - h2/4 and a3 = (h/2 + hpef - h3/8. When substituted 
into (2.1), the expressions (2.4) provide the input from the patches when voltages are 
applied. 

Finally, the fixed-edge boundary conditions 

(2.5) u = v w = 
dw 

dx 
0 x = 0,£ 

are used to model the end behavior of the shell. These boundary conditions are 
appropriate for experimental setups in which heavy endcaps prevent edge movement. 
Note that alternative boundary conditions such as simply supported or "almost fixed" 
(see [4]) can be employed if edge movement is suspected. 

2.2. Weak Form of Modeling Equations. The strong form (2.1) of the modeling 
equations requires first and second derivatives of the moment and force resultants. 
As noted in (2.2) and (2.4), both the internal and external moment and force resul- 
tants are discontinuous due to the piezoceramic patches. Hence formal analysis and 
approximation using the strong form of the modeling equations lead to difficulties 
due to differentiation of Dirac distributions. 

To alleviate these difficulties, it is advantageous to consider a weak form of the 
modeling equations which can be derived from Hamilton's principle (energy consider- 
ations). While equivalent to the strong form under suitable smoothness assumptions, 
the weak form provides a more natural setting for analysis and approximation. 

The state variables for the problem in second-order form are taken to be y = 
(u, v, w) in the state space H = L2{T0) xL2(T0) xi2(r0). For the fixed-edge boundary 
conditions (2.5), the space of test functions is taken to be V = #o(F0) x H^(T0) x 
#0

2(r0) where 

H^To) = {77 G H\r0) | rKO) = vW = 0} 

H2(T0) = {r,e H2(r0) 177(0) = ^(0) = 77(f) = 77^) = 0} . 

For $ = (u, v, w) and * = (771,772,773), the H and V inner products are taken to be 

<$, *)H = /   phurj1d'y + /   phvrj^d-y + /   phwrj3 
Jr0 Jr0 ^r0 

and 

3*7 

f   f   Eh    \. ,<9T7I       1  ,t       ,      dm 
((E,Epe)*,*)v = yro{rr^[(e*+^)&+^(1-,/)e*9ör 

+ IM 

. Ö771   ,    1   ,. .       9?7i 
d'y 

.0771 1   „ . 0»72 
dö      2ÄV 

E^#WM) 1- V2 

,0772    ,      1   /n .        Ö772 
{-£l> + v^-de+2R{l~Vpe)ex6~te 

d'y 
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f      ^L- 1, N_     h? . .d2rj3 
-^(ee + vex)r\i - —{KX + VKB)-Q^ 

h2 ,927?3      h2 d2r)3 

■ü&(Ke+VK')w--m(1-v)Tdrie 

"£ÄXpe-(M) 3/lpe/        , ,— ,        . ^Ö27?3 

- d2T)3       a3 d2Tj3 %^+Vpe^r-^-^{l-Vve)r-dxde dj 

where ex,Ee,exg,Kx,Ke,T are defined in (2.3) and d*y = Rdddx. The dependence of 
the inner product on the Young's moduli is explicitly included in the definition to 
provide a notation for defining analogous damping expressions later in this work. 

The weak form of (2.1), as derived in [5] from energy principles, is given by 

L{ 
d2u dm 9% dm Rph^+RN^+Ns^-Rg^-RUN.U^d^O 

(2.6) 
L{*C*+N^+mJ-i -R^ - 5w-w > *=° t=i 

r I       d2w dw 92rn%      1      ö2
77-J 

-2M Ö27?3       p- -  ^ 
xed^d~e~RqnV3+h «J+ifM.k92* Jpeidx2^RK de2 ^7 = 0 

for all * = (771,772,%) G V. A comparison between (2.6) and (2.1) illustrates that 
in the weak form, derivatives are transferred from the discontinuous resultants onto 
suitably smooth test functions. This alleviates the difficulties associated with the 
discontinuities and reduces smoothness requirements on approximate solutions. 

2.3. Abstract Formulation. To define appropriate sesquilinear forms, we group stiff- 
ness components separately from damping components. To this end, we define 
Gi :V xV ->C, i = 1,2 by 

(2.7) 
<r2(#, *) = ((CD, cDpe)$, *)y + jf ßwrj3dj. 

Note that {(CD, CDP€)$, *)V differs from ((E, Epe)<&, ^)v only in that Young's moduli 
are replaced by Kelvin-Voigt damping coefficients. It can be directly verified that the 
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stiffness form o\ satisfies 

(HI) |(Ti($,*)| < ci|$|y|*|i/ , for some cx G E 

(H2) RecTi($, $) > c2\®\v , for some c2 > 0 

(H3) CT1($,*)=CTi(*,*) 

for all $,f ey. Moreover, the damping term cr2 satisfies 

(H4) |cr2($,*)| < c3|$|^|*|v , for some c36l 

(H5) Recr2($, $) > QI^IV , for some c4 > 0 

(Bounded) 

(^-Elliptic) 

(Symmetric) 

(Bounded) 

(V-EUiptic). 

Remark 1. The symmetry of CTI is dependent upon the choice of shell model and ul- 
timately reflects the Maxwell-Betti reciprocity theorem. While the Donnell-Mushtari 
model yields a symmetric sesquilinear form cru other models such as the Timoshenko 
shell model will not yield a symmetric form. 

To represent control contributions, let U = 1 
inputs and define B e C(U, V*) by 

{Bu(t),*)v.y = j £{{Nx)Jj£ 

denote the Hubert space of control 

l(N\    ~^2 

<Mx)pei 
d2r]3 1 
dx2      R2 (Me. ' oe2 dj 

for * e V. Here (•, -)v, v denotes the usual duality product. Finally, with the 
definition g = (l/ph)[qx,'q8,qn], we can write the weak form (2.6) in the abstract 
variational form 

(2.8)      (y(t), *>v,v + a*(y(t), *) + <n (»(*)> *) = (Bu(t) + g{t), *)v,v ■ 
To pose the problem in a first-order form amenable for control applications, we 

define the product spaces H = VxH and V = VxV with the norms 

\(^4>2)\2n = \<Pi\v + \4>2\2H 

\(<t>i,fo)\2v = \4>i\v + \fa\v- 

The state is taken to be z(t) = (y(t),y{t)) £ H. Finally, the product space forcing 
terms are formulated as 

(2.9) $(*) = 
0 Bu{t) = 

0 
Bu(t) 

The weak form (2.8) can then be rewritten as 

(z(t), A)v.iV + a(z(t),A) = (Bu(t) + g(t), A)v._v    for A e V 
(2.10) 

z(0) = z0 = (2/0,2/1) 
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where a : V x V —> C is given by 

a{(ß,ip) = - (4>2,1pl)v + o-iWi.^) + ^(02, ^2) 

for 0 = (0i, ^2),i{> = (ipi: V'2) G V. As proven in [5, page 109], a is V continuous and 
for A > 0, <r(-, •) + A (•, -)H is V-elliptic. Prom the continuity of a, it follows that one 
can define an operator Ä G £(V, V*) by <r(T, A) = (.41, A)v*,v ■ 

To obtain a strong form of the first-order system which is appropriate for control 
purposes, consider the system operator 

dom.4 = {(0i, 02) e U\4>2 G V, Ai0! + A2<f>2 G #} 

<2-n) 0        / 
-Ai   -A2 

with A1; A2 G £(V, V*) defined by 

(Aj0i,02V„y =CTj(01,02)      ,       1 = 1,2. 

It should be notated that A is the negative of the restriction to dom.4 of A G £(V, V*) 
so that CT(T, A) = (-.AT, A)n for T G domA, A G V. 

A strong form of the abstract system model is then given by 

z(t) = Az(t) + Bu{t) + git)   in V* = V x V* 
(2'12) z{0)=zo. 

The rigorous equivalence of solutions is established through the following theorems. 

Theorem 1. Under Hypotheses (H1)-(H5) on ax and <r2, Ä generates an analytic 
semigroup T(t) on V, H and V*. In terms of this semigroup, the representation 

(2.13) z(t) = T(t)z0 + J T(t- s)[Bu{s) + g{s)]ds 

defines a mild solution to (2.12) for z0 G V* and Bu+g G £2((0, T); V*). Furthermore, 
this semigroup is (uniformly) exponentially stable on V,Ti and V*. 

Theorem 2. Let zsg denote the semigroup solution to (2.12) given by (2.13) and let 
vvar denote the weak solution to (2.8). Under hypotheses (H1)-(H5), it follows that 
zsg(z0, f) = zvar(z0, J

7) for z0 G H and T = Bu + g G L2((0,T); V*). 

Following the convention of [14], we will use the same notation for the semigroups 
defined on V, H and V* since each semigroup is an extension or restriction ofjthe 
others. Note that dom.A defined in (2.11) is actually dom^Ä, the domain of A as 
a generator of T(t) in H. As detailed in Lemma 3.6.1 and Theorem 3.6.1 of [14] 
(see also Section IV.6 of [12] and Chapter 2, Theorem 5.2 of [11]), the property that 
A generates an analytic semigroup on V, H and V* results from the continuity and 
V-ellipticity of a. The exponential stability of 1(1) on H for second-order systems 
with strong damping is demonstrated in [1] while the exponential stability of T(t) 
on V and V* in this setting is proven in Lemma 3.3 of [2]. Finally, Theorem 2 is a 
reformulation of Theorem 4.14 of [5] and details can be found therein. 
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3. LQR Control Problem 

In the last section, the PDE system modeling the dynamics of the thin shell with 
surface-mounted piezoceramic actuators was written in the abstract first-order form 

z(t) = Az{t) + Bu(t) + g{t) 

z{0) = z0 

in V*. In this section, LQR control results for both the original infinite dimensional 
problem and approximating finite dimensional problems will be discussed. Two cases 
will be considered, namely when g = 0 and g is periodic in time. In both cases, it is 
assumed that state observations in an observation space Y have the form 

(3.1) zoh{t) = Cz{t) 

where C G £(H,Y) is bounded. The assumption that C is bounded is made to 
simplify the exposition and the reader is referred to [2] for arguments pertaining to 
the case of unbounded observation operators. 

3.1. No Exogenous Input. For the case in which g = 0, the infinite horizon prob- 
lem concerns the determination of a control u which minimizes the quadratic cost 
functional 

(3.2) J(u,z0) = JQ°°{\Cz(t)\2Y + \1ll'2u(t)\u}dt 

subject to 
z(t) = Az(t) + Bu(t) 

z(0) = z0. 

The positive, self-adjoint operator H is used to weight various components of the 
control. 

As detailed in [2, 5], if (A,B) is stabilizable and (A,C) is detectable, then the 
optimal control minimizing (3.2) is given by 

ü(t) = -Tl-lB*Iiz{t) 

where II solves the algebraic Riccati equation 

(.4*11 + IL4 - TlB1l-lB*Il + CC)z = 0   for all z G V 

and z(t) = S(t)z0. Here S(t) is the closed loop semigroup generated by A-BTZ~lB*U. 
For implementation purposes, it is necessary to define an approximate system and 

controls, and determine convergence criteria for these approximate controls when fed 
back into the infinite dimensional system. The approximations are considered in a 
Galerkin framework with trajectories evolving in the finite dimensional subspaces 
VN cVcW. It is assumed that the approximation method satisfies the standard 
convergence conditions 

(HIN) For any z €V, there exists a sequence zN G V^ such that \z - zN\v -> 0 as 
TV-^ co. 
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The finite dimensional operators and approximating system are then determined as 
follows. The operator AN :VN-^VN which approximates A is defined by restricting 
atoVN x VN; this yields 

(3.3) (-^T, A)n = <T(T, A)       for all  T, A G V" . 

For each N, the C0 semigroup on V^ which is generated by AN is denoted by TN(t). 
The control operator is approximated by BN G C(U, VN) given by 

(3.4) (B
N

U, A)   = (u, B*A)n       for all u G U, A G V^ 

while CN denotes the restriction of the observation operator C to VN. Finally, we let 
PN denote the usual orthogonal projection of H onto V^ which by definition satisfies 

(i) pNT eVN   for T € H 

(ii) (PNT - T, A)    =0   for all AeVN . 

This projection can be extended to PN € £(V*, VN) by replacing the H-inner product 
(T, A)n by the duality product (T, A)v.jV and considering T £ V*. 

The approximate problem corresponding to (2.10) with g = 0 can then be formu- 
lated as 

| (zN(t), A)H + a(zN(t),A) = {BNu{t),A)H       for all A&VN 

zN(0) = PNz0. 

This has the solution 

z»(t) = TN(t)PNz0 + f TN(t - s)PNBNu(s)ds. 

The following theorems taken from [2, 5] can be used to establish the convergence 
of the approximate gains to their infinite dimensional counterparts for certain classes 
of shell models (see specifically Theorem 7.10 and Lemma 7.13 of [5]). 

Theorem 3. Assume that the injection i : V ^ H is compact. Moreover, suppose 
that the damping sesquilinear form can be decomposed as <r2 = Scri + a2, for some 
6 > 0, where the continuous sesquilinear form <r2 satisfies for some A G K 

Re a2(<M) > -l\<t>\v - A|C    for all cf> G V . 

Finally, suppose that the operator A^1Ä2, where Ä2  G C(V,V*) is defined by 

(Ä24>,v)v, v = 0-2(0,77), is compact on V. 

If for some w£l and M > 1, T(t) satisfies 

\T(t)\C(H) < Me"*    ,    i>0, 

then for any e > 0 there exists an integer Ne such that for N > Ne, 

\TN{t)PN\c{H)<Me^+e)t    ,    *>0 

for some constant M > 0 independent of N. 
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Theorem 4. Assume that the injection i : V <—> H is compact. Let the sesquilinear 
form a associated with the first-order system (2.10) be continuous and V-elliptic. 
Assume that the operators A, B,C of (2.11), (2.9), (3.1), respectively, satisfy: (A,B) 
is stabilizable and (A,C) is detectable where B 6 C(U,V*) is unbounded and C G 
C(H,Y) is bounded. Consider an approximation method which satisfies (HIN). Fi- 
nally, suppose that for fixed iVo and N > N0, the pair (AN,BN) is uniformly stabi- 
lizable and (AN,CN) is uniformly detectable. 

Then for N sufficiently large, there exists a unique nonnegative self-adjoint solution 
IIw G C(V*,V) to the Nth approximate algebraic Riccati equation 

AN*UN + UNAN _ UNBNn-lBN'nN + (.N*(.N = Q 

in V^. There also exist constants M3 > 1 and o;3 > 0 independent of N such that 
SN(t) = eW-B^n-Wn»» satisfies 

\SN(t)\vN<M3e-^    ,    t>0. 

Moreover, the convergence of the Riccati and control operators 

UNPNz-^Uz inV for every zeV* 

I \C(H,U) ' 

as TV—>oo, is obtained. 

Example 1. We consider in this example a shell with constant parameters p, E, v, cr>. 
Such a case would arise if modeling a homogeneous shell or a shell in which the vari- 
ance of material properties across regions with actuators is negligible. The sesquilin- 
ear forms for this model are specified in (2.7). Due to the constant coefficients, CT2 

can be written as a2 = 6ai + a2 where 6 = ^ and a2($, *) = M/r0 
wV3dj- It follows 

immediately that 

Rea2((/>,<f>)=nf <fd>y >--\</>\2v 

for all <f> e V. The boundedness of the operator A2 generated by a2 follows directly 
from the boundedness of a2. Furthermore, it is noted that A{1 G £(V*,V) can be 
written as an operator on V —> V by A^1 = A^Fi where the injections i : V ^ 
H,i* : H <-> V* are compact. Thus A{1 is compact on V which implies that AilA2 

is compact on V since it is formed from the product of compact and bounded linear 
operators. Finally, the exponential stability of T(t), the stabilizability of (A,B) 
and the detectability of (A,B) are guaranteed by Theorem 1. The hypotheses of 
Theorem 3 are then satisfied for this system and one obtains uniform bounds on the 
approximating semigroups. The convergence of the Riccati and control operators is 
then obtained from Theorem 4. 

3.2. Periodic Exogenous Input. A reasonable assumption in many mechanical sys- 
tems is that g is periodic in time with period r. The system to be controlled in this 
case is 

z(t) = Az{t) + Bu(t) + g(t) 
(3-5) Z(0) = Z(T) 
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and an appropriate quadratic functional to be minimized is 

Jr{u) = \[{\Cz{t)\l+\K^u(t)\l}dt. 

Note that the periodic exogenous term g can be used to model inputs such as noise 
generated by rotating engine components (e.g., propellers or turbines) or periodic 
electromagnetic disturbances. 

To guarantee the existence of a unique Riccati solution and control for the system 
(3.5), it is assumed that (A,B) is stabilizable and (A,C) is detectable. Furthermore, 
it is assumed that g € L2(0, r; H) and that B is bounded. Under these conditions, it 
is verified in [6] that the Riccati equation 

A*U + UA + UBRT^U + C*C = 0 

has a unique solution. Furthermore, if r denotes the r-periodic solution of the adjoint 
or tracking equation 

f(t) = -[A - BTZ-'B^Yrit) + Ug{t) 

r(0) = r(r) 

and z is the closed loop solution of 

z(t) = [A- B1Z-lB*n]z{t) - BK-lB*r(t) + g(t) 

z(0) = Z(T) , 

then the optimal control is given by 

(3.6) u(t) = -Tl^B^Uzit) - r(t)]. 

The LQR theory for this case is less complete than that for systems with no 
exogenous input and is currently limited to bounded control inputs B. The synthesis 
of the theory for unbounded input operators and periodic exogenous forces is currently 
under investigation. The effectiveness of the method is illustrated in the final example 
of this work. 

4. Approximation Method 

A Galerkin method was used to approximate the solutions u, v, w to the system 
(2.6), or equivalently, (2.10). The approximating subspaces were taken of the form 

V^ = span{BUk} x span{B„fc} x spanjß^} 

where BUk,BVk,BWk denote bases for the u,v and w displacements, respectively. To 
exploit the tensor nature of the shell domain T0 and periodicity in 9, the bases were 
constructed with Fourier components in 6 and cubic splines in x (see [7] for details). 
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The approximate displacements were then given by the expansions 

Nu 

,x) = J2uk(t)BUk{6,x) 
fc=i 

vN(t,0,x) = Y^vk(t)BVk(9,x) 
fc=i 

wN{t,e,x) = Y,wkmWk{o,x). 
fc=l 

To obtain a finite dimensional system with matrices corresponding to the finite 
dimensional operators in (3.3) and (3.4), the sesquilinear forms ax and a2 were re- 
stricted to VN. This yields the matrix system 

0 

0 

Mu _ 

' d"(t)' 
= 

0 
+ 

0 
[«(*)] + 

0 

Ki 0 ' tf^(0) ' r<i 
0 MM _ 0^(0) . .v?\ 

where ^(t) = [wj (t),..., uMu, vx (t),..., vMv, u>i (*),•••, WMW\T contains the N = Nu+ 
Nv+Nw generalized Fourier coefficients. The s patch inputs are contained in u(t) = 
[ui(t),..., us(t)]T. The reader is referred to [7] for details concerning the construction 
of the mass, stiffness and damping matrices MM, K%, KfD, the inputs BM,<f(t) and 
the initial conditions y^1', y^'■ 

Multiplication by the inverted mass matrix yields the Cauchy equation 

(4.1) 
(t)    =   ANzN{t) + BNu{t)+gN{t) 

(0)   =   $ , 

where zN G R2M = [^{t), 'dM(t)]T. This system forms the constraint equations used 
in the finite dimensional LQR theory discussed in Section 3. 

5. Numerical Example 

We consider here an exogenous force g which is periodic in time with period r = 
10007T (500 Hz). The distribution of the force was taken to be binormal in the 
transverse and longitudinal directions and centered at (x, 6) = {1/2,0) and (x, 9) = 
(1/2, IT) as depicted in Figure 2. The magnitude of the transverse component qn was 
one hundred times that of the longitudinal component qx so as to model an input 
consisting primarily of acoustic sources located adjacent to (^/2,0) and (£/2,n). 

Six pairs of piezoceramic patches of length 1 cm and radial measure 7r/3 were 
employed as actuators. The locations and material properties of the patches along 
with the dimensions and physical parameters for the shell are summarized in Table 1. 

To accommodate the periodic exogenous force g, control inputs to the twelve 
patches were computed using the feedback law (3.6). Note that in this formula- 
tion, independent voltages are determined for the individual patches. This provides 
the capability of generating both inplane forces and bending moments in the regions 
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covered by the patches so that longitudinal, circumferential and transverse vibrations 
can be controlled. 

1   6 - Distribution 
,    of Normal Force 

Figure 2. Distribution of normal forcing function at 9 = 0 and 0 = w. Observation 
lines Li = {(x,0)\O < x < £,9 = TT/6}, L2 = {(x,9)\x = 3^/4,0 < 9 < 2TT} and 
observation point pi = (3^/4, ir/32). 

Time histories of the uncontrolled and controlled shell displacements at the point pj = 
(3£/4,7r/32), depicted in Figure 2, are plotted in Figure 3. The open loop trajectories 
exhibit both a transient response settling into steady state and a beat phenomenon 
due to the close proximity of the driving frequency and natural frequencies for the 
shell. At this observation point, all three displacement components are reduced by 
more than 90% when controlling voltages are fed back to the patches. 

Dimensions Parameters 

h = . 00127 m p = 2700 kg/m3 

R = Am E = 7.1x 1010 N/m2 

Shell £ = lm cD = 2.816 x 10-5 iVms 
^ = .33 
ß = 58.97Ns/m2 

hpe = .0001778 m ppe = 7600 kg/m3 

Epe = 6.3 x 1010 N/m2 

Patches Centers (x,9): (.25,0), (.5,0), (.75,0) cD   =3.211 x 10"5 Nms 
(.25;7r),(.5,7r),(.75,7r) Vpe = .31 

Dimensions: x : 0.1cm, 9 : TT/3 d3l = 190 x 10"12 m/V 

Table 1. Dimensions and physical parameters for the shell and patches. 
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1  1 ll  1  1  1   1  1  1 

-II   1 
'I'         .   (a)    .     .     .     . 

0.01       0.02      0.03      0.04      0.05      0.06      0.07      0.08      0.09       0.1 
Time (seconds) 

0.01       0.02       0.03      0.04      0.05      0.06       0.07       0.08       0.09        0.1 
Time (seconds) 

«?).... 
0 0.01       0.02       0.03       0.04      0.05       0.06       0.07      0.08       0.09        0.1 

Time (seconds) 

Figure 3. Uncontrolled and controlled shell displacements at the point 

p1 = (3i/A,Tr/32); 

(a) longitudinal u, 
(b) circumferential v, 
(c) transverse w displacements; 
 (uncontrolled), (controlled). 

To illustrate the spatial attenuation due to the feedback of voltages to the patches, 
root mean square (rms) plots of the uncontrolled and controlled trajectories along 
the axial line Lx and circumferential line L2 (see Figure 2) are plotted in Figure 4 
and 5, respectively. For the open loop case, these plots illustrate a standing wave in 
all three components of the displacement. The figures also demonstrate significant 
reductions in all three displacement levels, even in regions not covered by patches. 
This further illustrates the effectiveness through which the model-based control law 
can be used to attenuate shell vibrations. 
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,x10 

0 0.1 0.2        0.3        0.4        0.5        0.6        0.7        0.8        0.9 1 

Figure 4. Root mean square (rms) displacements along the axial line L\\ 
 (uncontrolled), (controlled). 

Figure 5. Root mean square (rms) displacements along the circumferential line L2; 
 (uncontrolled), (controlled). 
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6. Conclusions 

A model-based LQR method for controlling shell vibrations has been presented 
here. While developed in the context of a modified Donnell-Mushtari cylindrical shell 
model, the method is quite general and can be directly extended to other models and 
geometries. Under the assumption of strong or Kelvin-Voigt damping (a reasonable 
and typical assumption for many shell materials), model well-posedness and conver- 
gence of control gains is obtained using analytic semigroup theory combined with 
LQR results for unbounded input operators. 

The Galerkin method used to approximate the system dynamics utilizes bases con- 
structed from tensored Fourier polynomials and modified cubic splines. As discussed 
in [7], case must be taken when developing methods for approximating shell dynam- 
ics so as to avoid shear or membrane locking. One manifestation of locking is the 
existence of model dynamics which are incorrectly approximated by the numerical 
method. The use of a numerical method which exhibits locking can lead to a loss of 
control authority and potential controller destabilization if the approximations are 
sufficiently inaccurate. Further details regarding issues concerning the approximation 
of shell dynamics and convergence properties of the numerical method can be found 
in [7]. 

The numerical example demonstrates the effectiveness of the model-based control 
method for attenuating all three components of the shell displacement in the pres- 
ence of both transient and steady state dynamics. Furthermore, by modeling the 
global shell dynamics and patch interactions through coupled PDE and construct- 
ing the control law in terms of these PDE, significant reductions in displacement 
levels throughout the shell are obtained, even in regions devoid of patches. Numer- 
ical implementation of the LQR method in this manner provides a first step toward 
the development of model-based state estimators and compensators which can be 
experimentally implemented in shell applications. 

Acknowledgements: The authors thank H.T. Banks, CRSC, North Carolina State 
University, for input regarding various aspects of this investigation. 
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ABSTRACT. The standard state space solution of the finite-dimensional continuous time 
quadratic cost minimization problem has a straightforward extension to infinite-dimensional 
problems with bounded or moderately unbounded control and observation operators. How- 
ever, if these operators are allowed to be sufficiently unbounded, then a strange change 
takes place in one of the coefficients of the algebraic Riccati equation, and the continuous 
time Riccati equation begins to resemble the discrete time Riccati equation. To explain 
why this phenomenon must occur we discuss a delay equation of difference type that can be 
formulated both as a discrete time system and as a continuous time system, and show that 
in this example the continuous time Riccati equation can be recovered from the discrete 
time Riccati equation. A particular feature of this example is that the Riccati operator 
does not map the domain of the generator into the domain of the adjoint generator, as it 
does in the standard case. 
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1. The Discrete and Continuous Time Riccati Equations 

We begin by comparing two different optimization problems, namely the discrete 
time and the continuous time quadratic cost minimization problems. 

In the discrete time quadratic cost minimization problem we study the discrete 
time system 

xn+\ = Axn + Bun, 
(L1) yn = Cxn + Dun,    neN = {0,l,2,...}. 

Here un belongs to the input space U, xn to the state space H, and yn to the output 
space Y. These are Hilbert spaces, and A, B, C and D are bounded linear operators 
between the appropriate spaces. The problem is to find a sequence un G l2(N;U) 
that minimizes the cost functional 

oo 
(1.2) W(X0,U) = J2 ((Vn,yn) + (un,Run)) , 

where R is a given positive definite operator on U. Under mild assumptions (sta- 
bilizability, detectability, and coercivity of the cost function), the optimal control 
uopt jg 0f gf^te feedback type, i.e., there is a bounded linear operator K such that 

Preceding Page Blank 
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uopt = Kx'f for all n G N, and the optimal cost W(x0,uopt) can be written in the 
form 

W{x0,u
opt) = (x0,Px0),        x0eH, 

where P is a positive definite operator on H, the Riccati operator. Moreover, the 
feedback operator K and the Riccati operator P satisfy the equations 

(1.3) SK = - {B*PA + D*C), 

(1.4) A*PA-P + C*C = K*SK, 

(1.5) S = R + D*D + B*PB. 

We shall refer to these equations as the discrete time Lure equations. We call S the 
sensitivity operator of the discrete time problem, due to the fact that it describes the 
sensitivity of the optimal solution with respect to a nonzero closed loop control signal; 
cf. [Malinen(1997)]. In the standard case the sensitivity operator S is invertible, and 
by eliminating K and S we get the discrete time algebraic Riccati equation 

(1.6) A*PA-P+C*C={B*PA+D*C)*(R+D*D+B*PB)-\B*PA+D*C). 

See, for example, [Curtain and Zwart(1995), pages 329^332] or [Malinen(1997)]. 
In the continuous time quadratic cost minimization problem we study the contin- 

uous time system 

z'(t)=Az(t)+Bu(t), 

(1.7) y(t)=Cz(t) + Du{t),    iGE+ = (0,oo), 

x(0) = z0. 

Here u(t) belongs to the input space U, z(t) to the state space H, and y(t) to 
the output space Y, still Hilbert spaces. We suppose that A generates a strongly 
continuous semigroup A on H and that D is bounded, and, for the moment, we also 
take the operators B and C to be bounded. Naturally, we interpret (1.7) in the strong 
sense, i.e., z is given by z(t) = A(t)x0 + fiA(t - s)Bu{s) ds for t G R+. This time 
the problem is to find a control u G L2(E+; U) that minimizes the cost functional 

(1.8) W(x0, u) = Jo   ((y(t), y{t)) + (u(t), Ru(t))) dt, 

with a positive definite R. Again, under mild assumptions (stabilizability, detectabil- 
ity, and coercivity of the cost function), the optimal control wopt is of state feedback 
type, i.e., there is a bounded linear operator K. such that uop'(i) = K,zopt(t) for all 
t G E+, and the optimal cost W(x0,uopt) can be written in the form 

W{x0,uopt) = (x0,rx0),        x0eH, 

where V is the positive definite continuous time Riccati operator. Moreover, the 
feedback operator K and the Riccati operator V satisfy the continuous time Lure 
equations 

(1.9) SK = - {B*V + D*C), 

(1.10) A*V + VA + C*C = K*SK, 

(1.11) S = R + D*D. 
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Equations (1.9) and (1.11) hold on H and U, respectively, and (1.10) is valid on 
the domain dom(A) of A; in particular, V maps dom(A) into dom(A*). Again we 
call iS the sensitivity operator of the continuous time problem, since it describes the 
sensitivity of the cost function with respect to a nonzero closed loop input. In the 
standard case the sensitivity operator <S is invertible, and we can eliminate /C and <S 
to get the continuous time algebraic Riccati equation 

(1.12)       A*V + VA + C*C = {B*V + D*C)* {R + D'D)'1 (B*V + D*C), 

valid on dom{A). See, for example, [Curtain and Zwart(1995), pages 316-317] or 
[Staffans(1997b)]. 

There are some striking similarities and differences between the discrete and con- 
tinuous time Lure equations (1.3)—(1.5) and (1.9)—(1.11) and Riccati equations (1.6) 
and (1.12). Maybe the most important difference is that the discrete time sensitivity 
operator S depends on the discrete time Riccati operator P, but that the continuous 
time sensitivity operator <S does not depend on the continuous time Riccati opera- 
tor V, and, if we ignore the difficulties caused by the unbounded operator A, the 
structure of the discrete time Lure equations (1.3)—(1.5) is more complicated than 
the structure of the continuous time equations (1.9)—(1.11). 

2. The Discrete and Continuous Time 
Closed Loop Riccati Equations 

Above we have written the discrete and continuous time optimality conditions and 
Riccati equations in "open loop" form, i.e., they are written in terms of the original 
operators A, B, C, and D in (1.1), and A, B, C, and D in (1.7). It is also possible 
to give "closed loop" versions of the same equations. 

If we in (1.1) replace un by a new control vn according to the formula 

then (1.1) becomes 

where 

un = Kxn + vn,        ne N, 

xn+i = AQXn + Bvn, 

yn = Cox„ + Dvn,    n G N, 

A0 = A + BK,       C0 = C + DK. 

Replacing A and C in (1.3)-(1.5) by A = Aö - BK and C = CQ - DK we get the 
discrete time closed loop Lure equations 

RK = - {B*PAÖ + D*CÖ), 

A*ÖPAÖ -P + C*ÖCÖ = -K*RK, 

The operator R need not be invertible, but if it is, then we can eliminate K to get 
the discrete time closed loop algebraic Riccati equation 

A*0PA0 -P + C*ÖC0 = - (B*PAÖ + D*C0y R-1 {B*PAÖ + D*CÖ). 
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The difference compared to (1.3)—(1.6) consists in a change of sign in the quadratic 
term, and the fact that the operator S has been replaced by R and no longer enters the 
equations. Clearly, the invertibility of R is a stronger condition than the invertibility 
of S. 

In the continuous time case we can proceed in the same way. We separate the 
feedback contribution to the control from the external control, and write 

u(t) = Kx(t) + v(t),        t£R, 

to get the closed loop system 

z'(t) = Aoz(t) + Bv(t), 

y(t)=Coz(t) + Dv(t),    ieK+, 
z(0) = z0, 

where 

A0 = A + BJC,       CQ = C + DJC. 

Replacing A and C in (1.9)-(1.11) by A = Aö - BK and C = CQ - DK we get the 
continuous time closed loop Lure equations 

RJC = - {B*V + D*C0), 
(2.1) A*0V + VA0 + C*ÖCÖ = -1CRJC.    , 

If R is invertible, then we can eliminating K, to get the continuous time closed loop 
algebraic Riccati equation 

(2.2) A*ÖV + VA0 + C*ÖC0 = - (B*V + D*C0)* R^1 {B*V + D*C0) ■ 

Again, the invertibility condition on R is a stronger one than the invertibility condi- 
tion on S (whenever D is nonzero). Comparing these equations to the corresponding 
open loop equations we see the same changes as in the discrete time case. 

The closed loop discrete and continuous time Lure equations and Riccati equations 
resemble each other more than the corresponding open loop equations, due to the fact 
that the operators S and S have disappeared. However, observe that the closed loop 
equations contain an extra implicit dependence on the feedback operators K and /C, 
hidden in the definitions of AO,CQ,AO, and Co, and that they are less general in the 
sense that we need an invertibility condition on R instead of invertibility conditions 
on S and S, respectively. 

3. Unbounded Control and Observation Operators 

Up to now we have assumed the continuous time control operator B and ob- 
servation operator C to be bounded. They can be allowed to be somewhat un- 
bounded without any significant nontechnical additions to the theory. This applies, 
in particular, to the class of smooth Pritchard-Salamon systems studied in, e.g., 
[Pritchard and Salamon( 1985), PritchardandSalamon(1987)] and [van.Keulen(1993)]. 
However, if B and C are sufficiently unbounded then the structure of the continuous 
time Lure equations (1.9)-(1.11) changes, and they become even more similar to the 
discrete time Lure equations (1.3)—(1.5). 
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The main problem is how to define the term B*V in (1.9) when B is unbounded. 
The largest class of systems that we are able to cope with is the class of well- 
posed and regular Salamon-Weiss systems; see [Salamon(1987), Salamon(1989)] and 
[Weiss( 1994a), Weiss( 1994b)] for the relevant theory. In this theory the natural do- 
main for B* is dom(A*). As before, we want (1.10) to hold on dom(A), hence (1.9) 
should also hold at least on dom(A). Thus, the operator B*V should be defined at 
least on dom(A). Since the natural domain of B* is dom(A*), we would like V to 
map dom(A) into dom(A*) (as it does in the case of bounded B and C). However, 
this will not be true in general, and in particular, it is not true in the example that we 
present below. Thus, we are forced to extend B* to a larger domain. This extension 
is not unique, due to the fact that dom{A*) need not be dense in the larger domain 
(this will be the case in the example given below). 

The necessary extension of B* can be carried out in at least two different ways. 
Instead of extending B*, [Flandoli et al.(1988)] show that in the case where D = 0 
and C is bounded it is possible to find some extension of B*V such that the Riccati 
equation (1.12) holds on dom(A) (this result applies to some non-regular systems as 
well). However, the definition of the extended B*V given by [Flandoli et al.(1988)] is 
quite implicit (it is part of the proof of [Flandoli et al.(1988), Corollary 4.9]), and it 
far from obvious how to compute this extension from the original data. Moreover, it 
is not clear to what extent that result applies when D ^ 0 or C is unbounded (as is 
the case in the example that we present below). 

Our solution, found in [Staffans(1997a), Staffans(1997b)], is quite different. We 
impose an extra "regular spectral factorization assumption", the content of which 
is that both the input/output map of the original system and a particular spectral 
factor should be regular together with their adjoints in the sense of [Weiss(1994a)]. 
See [Staffans(1997a), Staffans(1997b)] for details. In order to verify this assumption 
for a particular system one needs good information about its input/output behavior. 
This type of information is readily available for delay equations but not for general 
PDEs. In particular, it follows from [Staffans(1995), Lemma 2.1] that this assumption 
is satisfied in the example presented below, but it is still an open question whether 
or not it is satisfied in most of the really interesting PDE examples. 

The regular spectral factorization assumption enables us to replace the extension of 
B*V used in [Flandoli et al.(1988)] by B*P, where B* stands for the straightforward 
Weiss extension [Weiss(1994a)] 

(3.1) B*x=   lim B*ß(ßl-A*)~1x 

ofB*. As shown in [Staffans(1997b)], if we use this extension, then we must add a cor- 
rection term to the continuous time sensitivity operator S and replace the definition 
(1.11) ofSby 

(3.2) S = R + D*D+  lim  B*V (al - A)'1 B 
a—>+oo 

(this limit exists in the strong sense whenever the regular spectral factorization as- 
sumption holds). Equations (1.9) and (1.10) remain valid (with B* replaced by B*). 
Observe that (3.2) agrees with (1.11) whenever B is bounded. As in the discrete time 
case, it can be shown [Staffans(1997a)] that S > R + D*D, and that S depends only 
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on the weight R and the transfer function of the system, i.e., S is independent of 
the particular realization A, B, and C. The physical interpretations of S and <S are 
identical [Malinen(1997), Staffans( 1997b)]. 

Since the sensitivity operator S does not show up in the closed loop Lure and 
Riccati equations, it is to be expected that these should still remain the same as in 
the case of bounded control operator B and observation operator C. Indeed, this is 
the case, as shown in [Staffans(1997a)]. 

The purpose of this paper is to present an example where the change from (1.11) to 
(3.2) takes place. This example is a delay equation of difference type. It can be formu- 
lated both as a discrete time system and as a continuous time system. In this example 
the continuous time sensitivity operator S is the same as the discrete time sensitiv- 
ity operator S, and the two Riccati equations (1.6) and (1.12) (with (R + D*D)~ 
replaced by <S_1) become more or less equivalent. We remark that this example has 
been discovered independently by [Weiss and Weiss(1997)]. Some additional details 
of this example are presented in [Staffans(1996a)] and [Weiss and Weiss(1997)]. 

Another example illuminating the difference between the two extensions of B* 
used in [Staffans(1997b)] and [Flandoli et al.(1988)] is found in a recent preprint by 
[Weiss and Zwart(1996)]. In that example D = 0 and C is bounded. 

For completeness, let us point out the fact that the present theory says nothing 
about the solvability of the system (1.9), (1.10), and (3.2): Is the solution unique, 
and can these equations be used to actually compute II, K, and <S? In other words, 
the converse part of the theory is still missing. 

4. The Delay Equation 

In the rest of this note we consider the following delay equation of difference type: 

x(t) = Ax(t-T) + Bu(t),    te[0,oo), 

(4.1) y(t) = Cx(t-T) + Du(t),   te[0,oo), 

x(t)= given, t=[-T,0). 

Here u(t) e U, x(t) e H, y(t) € Y (all Hilbert spaces), and A, B, C, and D are 
bounded linear operators between the appropriate spaces. For simplicity, we assume, 
in addition, that the system (4.1) is exponentially stable, but this assumption can 
be replaced by a stabilizability and detectability assumption. Moreover, we assume 
that the data have been chosen in such a way that the discrete time Lure equations 
(1.3)-(1.5) have a unique solution, with P positive definite and S strictly positive 
definite, i.e., S > el for some e > 0. The cost function W that we want to minimize 
is given by (1.8). 
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5. Two Discrete Time Formulations 

It is easy to reformulate (4.1) as a discrete time system. This can even be done in 
two conceptually different ways. In both cases we start with the observation that if 
we define 

Unit) =u(i + nT), 

xnit)=xit+in-l)T), 

yn{t) = y(t + nT),       n£N,        te[0,T), 

then (4.1) becomes 

Xn+lit) = AXnit) + Bunit), 

(5.1) yn(t) = Cxnit) + Dunit),       neN,        te[0,T), 

x0it) = given,        t£[0,T), 

and the cost function W can be written in the form 

roo 

W(x0, u) = Jo   i(yit), y(t)) + («(«), Ru(t))) dt 

(5.2) = E  f r «!/»(*)- Vn(t)) + (Unit),Runit))) dt) 

=   r f£ ((Vnit),ynit)) + (unit),Runit))))   dt. 

The two different expressions given above for the cost function gives rise to two 
different interpretations. In the first interpretation we take the input, state, and 
output spaces to be 

U = L\0,T;U),        H = L2iO,T;H),        y = L2(0,T;y), 

and we have a standard discrete time minimization problem. 
In the second interpretation we observe that, for each fixed t G [0, T), the sequences 

x„it) and yn(t) depend only on a;0(t) and un(t), and not on x0(s) and un(s) for s^t. 
This means that the system (5.1) is really a collection of independent equations, 
parametrized by the real parameter t G [0,T). Moreover, it follows from the last 
line in (5.2) that in order to minimize the total cost it suffices to minimize each 
t-parametrized problem separately. Thus, in this interpretation, we have an infinite 
number (parametrized by t G [0, T)) of problems that are otherwise identical, but have 
different initial states x0 = a;0(t). Each subproblem is a discrete time minimization 
problem of the type described in Section 1, with input space U, state space H, and 
output space Y. Let us in the sequel denote the common optimal feedback and 
Riccati operators for these subproblems by K and P, respectively. Then, for all 
t e [0,T) and n G N, we have <p*(t) = Kx%*(t), or if we recall the definitions of 
xn(t) and Unit), 

(5.3) u^it) = Kxoptit -T),        t> 0. 
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Moreover, by (5.2), the total optimal cost will be 

W(x0, uopt) = [T W(x0(t), u
opt{t)) dt 

Jo 

(5.4) = j (x0{t),Px0{t))dt 

/■o 
(x{t),Px(t))dt. 

/: 

6. A Continuous Time Formulation 

Although the two discrete time formulations given above are very natural, the most 
common approach is to formulate (4.1) as a continuous time problem rather than a 
discrete time problem. Equation (4.1) is a special case of what is usually called a 
"difference equation"; see [Hale(1977), Section 12.3]. The standard method to rewrite 
this into a continuous time system is to solve (4.1) to get x, then to translate x to 
the left, and to restrict x to [—T, 0) to get a new initial function given on [—T,0) 
for the same equation. In this setting the input, state, and output spaces become U, 
H = L2(-T, 0; H), and Y, respectively, and the state z(t) at time t is given by 

z{t) = {s ^ x{t + s)),        sG[-T,0). 

The generator A of the semigroup that we get in this way is the differentiation 
operator 

(6.1) Az = z\    dom(A) = { z e Wl'2(-T, 0; H) | z{0) = Az{-T) }. 

Its adjoint is the differentiation operator 

(6.2) A*z = -z',    dom(A*) = {zG W1'2(-T,0;H)\ z(-T) = A*z(0)}. 

The input and output operators B and C are unbounded, and they are defined through 
the equations 

(6.3) B*z = B*z(0) for z G dom(A*),        Cz = Cz(-T) for z € dom(A). 

The resulting system is well-posed and regular.   For details, see [Staffans( 1996b), 
Theorem 6.1]. 

From the discussion in the previous section we know the optimal solution to the 
quadratic cost minimization problem. By (5.3), uopt(t) = Kxopt{t - T), hence the 
continuous time state feedback operator K, is unbounded, and it is given by 

(6.4) K,z = Kz(-T),    z e dom(A), 

and by (5.4), the continuous time Riccati operator is 

(6.5) Vz = Pz,    zGL2(-T,0;H). 

We claim that V does not in general map dom(A) into dom(A*). This can be 
seen as follows. By (6.1) and (6.2), V maps dom(A) into dom(A*) if and only if 
P = A*PA. However, if this is the case, then we can iterate the equation P = A*PA 
to get P = (A*)kPAk for every k G N, and letting k -> oo we find that P = 0. Thus, 
the only case in which V maps dom(A) into dom{A*) is when P = 0, i.e., the optimal 
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cost is zero and also V = 0. In all other cases, in order to give a meaning to the 
term A*P in (1.12) we have to extend the domain of B*. Since V maps dom(A) into 
W^i-T, 0; H), it suffices to define B*x for all x G Wl'\-T, 0; H) (see the discussion 
in Section 2). Equation (6.3) does not define B* uniquely on Wlfi{-T,Q;H) since 
dom{A*) is not dense in this space. The Weiss extension of B* (cf. (3.1)) is given by 

(6.6) B*x = B*x(0), 

ioTallxinWl-2(-T,0;H). 

7. Computation of the Operator <S 

Since we know V, we can compute S from (3.2). For each f eH = L2(-T, 0; H) 
and a G p(A) we have 

((al - A)-1 /) (t) = (l- e-^A)'1 ^ ea^f(s) ds - f^ea^f(s) ds. 

By letting / tend to Bu = BS0u (where 60 is the unit atom at zero) in the distribution 
sense we get 

(7.1) ((al - A)'1 Bu) (t) = eat (/ - e^Af1 Bu, 

hence, by (3.2) and (6.6), 

Su = (R + D*D)u + lim B*V (al - Ay1 Bu v ' a—>oo v 

= (R + D*D)u + lim B*P (i - e'^A)'1 Bu K ' a—>oo \ / 

= (R + D*D)u + B*PBu = Su. 

Thus S = S. 

8. Verification of the Modified Continuous Time Lure Equations 

Above we have solved the quadratic cost minimization problem for equation (1.1) 
with cost function (1.2) by appealing to the discrete time theory. Here we shall show 
that the continuous time feedback operator K and Riccati operator V satisfy (1.9) 
and (1.10), where <S is the operator that we computed above, i.e., S = S. 

Let us start with the verification of (1.9). Take z G dom(A). By (6.4), Kz = 
Kz(-T), and by (6.5) and (6.6), 

(B*P + D*C)z = B*Pz(0) + D*Cz{-T). 

Replacing z(0) by Az(-T) we get 

{B*P + D*C)z = (B*PA + D*C)z(-T). 

Thus, (1.9) follows from (1.3), (6.4), and the fact that S = S. 
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It remains to verify (1.10). Take z0, zx G dom(A). Since V maps Wia{-T,Q;H) 
into itself we can integrate by parts to get 

{Aza,Vz1) + {zQ,VAzi) 

= f_T (4(t), CPZl)(t)) dt + J°T (z0(t), (rz[)(t)) dt 
= (z0(0), (P*i)(0)> - (zoi-T), (VZl)(-T)) 

+ /° {z0(t),(Vz[)(t)-(Vz1)'(t))dt 
J-T 

= (Azo(-T),PAZl(-T)) - z0(-T)PZl(-T), 

where the last equation follows from the facts that z0(0) = Az0(-T), zj(0)  = 
AZl(-T), and (Pz)(t) = Pz{t). Thus 

(Azo^Z!) + (zotVM) = (M-T), {A*PA - P)z1{-T)). 

This equation, together with (1.4), (6.3), and (6.4), gives (1.10). 
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ABSTRACT. A crucial issue in boundary controllability problems for partial differential 
equations is choosing the appropriate regularity for the space of controls. This space should 
satisfy two criteria: it should be large enough, so that controllability is possible; and it 
should be small enough, so that the initial regularity of solutions is preserved. Reconciling 
these two opposite criteria is sometimes easy and sometimes very difficult. The aim of this 
article is to provide a solution for this problem for the wave equation with Neuman controls. 
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1. The controllability problem 

We denote the coordinates in K x Rn by (x0 = t, xx,..., xn). For convenience we 
call t the time coordinate and x the space coordinate. £ stands in the sequel for the 
corresponding Fourier variable. Set 

_l_d_ 
3      i dxj' 

Let Q be a bounded set in Rn with C2 boundary dfl. Then we use the notations (•, •), 
respectively (•, -)g for the L2 inner product in Q, x [0, T], respectively dfl x [0,T\. 

Consider a second order hyperbolic partial differential operator 

P(t,x,D) = dja?kdk 

in Q x [0, T] so that the surfaces t = const are space-like. The corresponding inho- 
mogeneous Neuman problem is 

Pu = 0 inftx[0,T], 
. .  dvu = g inofix[0,T], 

li-ij i  u{0)=u0 infi, 
dßu(0) = u\ in f2. 

Here 9M is the conormal derivative with respect to the surfaces t = const, 

dß = aokdk 

'Research partially supported by NSF grant DMS9622942 and by an Alfred P. Sloan fellowship. 
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and <9„ is the conormal derivative with respect to the lateral boundary du x [0, T], 

dv = vja?kdk 

where v is the unit outer normal to d£l. 
If the coefficients are smooth then the homogeneous problem (i.e. with g = 0) is 

well-posed in H8(Q) x H8'1^) at least if -1/2 < s < 3/2. For other values of s one 
cannot simply use the H8 spaces and the appropriate compatibility conditions are 
required on the boundary. If the coefficients of P are only C1 then the homogeneous 
problem is well-posed in Hs(ti) x H"-\Ü) for 0 < s < 1. 

Let T be an open subset of dtt x [0,T]. Then the exact boundary controllability 
problem with Neuman boundary controls localized in T can be stated as follows: 

Given any initial data (u0,Ui) G H8 x H8'1 find a boundary control g G Gs, 
supported in Y, so that the solution u to f l.lj satisfies u(T) = dßu(T) = 0. 

The allowable range of s depends on the regularity of the coefficients (see the 
comments above). Since the Neuman problem is backwards well-posed, one can also 
start at time T with 0 Cauchy data, solve the equation backwards and try to find g 
so that at time t = 0 the Cauchy data is exactly (u0, «i). 

The problem we are interested in here is that of the choice of the space of controls 
Gs. A good choice (see [4]) should have the following properties: 

(C) Gs should be large enough, so that controllability is possible. 
(CR) Gs should also be sufficiently small, so that the solutions to (1.1) stay in Hs 

between the times 0 and T. 
The usual choice in the literature is the obvious one, Gs = Hs_1. Under appropriate 

assumptions on the coefficients and on the size of the set Y (see e.g. [2], [3], [1], [6]) 
this space is large enough to satisfy (C). However, if n > 1 then it fails to satisfy 
(CR). Hence, one can infer that the good choice of Gs is a space slightly smaller than 
Hs~l. The first idea one is tempted to try is to substitute H3'1 by Hq~l, q > s; 
unfortunately, in this case (C) fails. The explanation is that in the hyperbolic region 
of the cotangent bundle of the boundary (which correspond to the singularities that 
hit the boundary transversally and are reflected) the microlocal H3'1 regularity for 
functions in G8 is the correct one; it is only in the glancing region (which corresponds 
to singularities propagating in directions tangent to the boundary) that one needs 
some better microlocal regularity for G8 functions. 

We conclude the discussion of the controllability problem with remarks about some 
of its features which are only indirectly related to the problem considered here. 

Remark 1.1. (On suitable geometric assumptions) Obtaining exact boundary control- 
lability results requires certain assumptions on the geometry of the controlled region Y 
relative to Q and on the regularity of the coefficients of the hyperbolic operator. The 
two most important such sets of conditions are 

i) The geometric optics condition (see {!}), based on the idea of propagating infor- 
mation along rays. This requires any generalized bicharacteristic of P m fi x [0, T] to 
hit Y in a nondiffractive point. A nondiffractive point is a point where the ray would 
leave the domain fi if there were no boundary. 

ii) The pseudoconvexity condition (see [7]), based on the idea of propagating in- 
formation across pseudoconvex surfaces. This requires the existence of a strongly 
pseudoconvex function <j> in Q x [0, T] which is negative at times 0, T but positive 
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at some intermediate time t and which satisfies dv<j> < 0 outside T. (the result was 
proved in [6] for the case when the control is taken on the entire boundary; to obtain 
the more precise geometrical condition on T one needs to use more refined Carleman 
estimates for solutions to boundary value problems as in [7].) 

Remark 1.2. (The regularity of the coefficients) Well-posedness of the hyperbolic prob- 
lem requires essentially C1 coefficients. Many of the features of the problem depend on 
this regularity. The geometric optics method requires C2 coefficients. The Carleman 
estimates method requires only C1 coefficients. The range of admissible values for s 
also depends on the regularity of the coefficients. For instance, with C1 coefficients 
and the equation in divergence form the admissible range is 0 < s < 1. 

2.   Duality and the observability problem 

Consider now the dual homogeneous problem 

!P*v = 0 inftx[0,T], 
0„ü = O inöQx[0,T], 
v(0) = v0 in Ü, 
<V(°) = vi in tt, 

which is well-posed in the space Hq(Q) x F9_1(Q). 
To it we associate the stable observability problem 
Given the observation v\T in a space Fq = Ff, determine the initial data {v0,vx) G 

m x H"-\ 
Now the question is how to choose the observation space Fq. It should be small 

enough, so that observability can hold; but it should also be large* enough, so that it 
contains v\r for any initial data (v0, vi) G Hq x F9""1. Thiscan be summarized in the 
following two inequalities (O), which guarantees that stable observability holds, and 
(OR), which gives the regularity of the observation. 

(0)      K|,j + K|9-i <c\v\F<, 

(OR) \v0\q + \vx\g-i > e\w\F* 

The controllability and observability problems are dual. To make this more precise 
start with the following integration by parts, 

(2.2) (u, dßv) - (dpu, v) \t£. = (tt, Pv) - (v,Pu) + («, dvv)d - (v, d„u)d 

for any smooth functions u, v. Suppose now that u solves the inhomogeneous problem 
(1.1) with zero Cauchy data at time T and that v solves the homogeneous problem 
(2.1). Then (2.2) becomes 

(2.3) (f*o,vi) - (ui,t;0) = -(g,v)d 

which is the duality relation which connects the controllability problem with the 
corresponding observability problem. For the controllability problem one needs to 
look at the map 

T : Gs(r) -> HS(Ü) x Hs-\n),      Tg = (u(0), 0Mu(O)) 
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(where u is assumed to solve (1.1) with 0 Cauchy data at time T). Then the control- 
lability and regularity statements (C) and (CR) are equivalent to saying that T is a 
surjective, respectively a bounded operator. 

For the observability problem, on the other hand, consider the map 

S : H"(Q) x Hq-\n) -► Fq(T),      T(v0, v{) = v[r 

(where v is assumed to solve (2.1)). Then (0) and (OR) are equivalent to saying 
that S is bounded from below, respectively that S is bounded. 

By (2.3) the duality S = V is achieved if we take q + s = 1 and Gs = F'q. 
The controllability and regularity statements (C), (CR) are then equivalent to the 
observability and regularity estimates (O), (OR). Hence, determining the correct 
spaces Gs for the boundary controls reduces to finding the appropriate spaces Fq for 
controllability. 

Lions's idea is the following. Suppose we know the uniqueness result v = 0 in T 
implies v0 = vi = 0. Then define the norm of the space Fq exactly by 

\v\Fg(T) = N9 + |fl|g-l 

Such a space will have the right properties, and its dual is the good space for con- 
trollability. 

Thus, it remains to characterize the space Fq. Intuitively, the dependence of the 
Fg norms on q should be fairly simple. One would expect that Fq and Fr differ by 
exactly q-r derivatives, Fq = Dr~qFr. Then it is best to characterize Fq for a given 
value of q. The simplest choice, which is used in the sequel, is q = 1. Then we want 
to identify the space F = i*i, defined by 

\V\FT = bo Iff i + ML
2 

3. The F space 

Define the "tangential" component R of P on the boundary dfl x [0, T] by 

Ru = Pu     whenever dvu = d^u = 0 

This is equivalent to saying that local coordinates can be chosen in which 80. = 
{xn = 0} and 

(3.1) p(x,0=C-r(x,O    on{x„ = 0} 

Since the boundary dQ x [0, T] is time-like, it follows that R is also hyperbolic. If P 
has C1 coefficients then R also has C1 coefficients. 

Introduce now the spaces Xs'e associated to R by 

XS'° = HS   Xs-1 = {ueHs;   Ru&Hs~1}    Xs'~l = Hs + R*HS+1 

Xs'e = [Xs'°,Xs-1}g   O<0<1      Xa--e = [Xafl,X'-1]e   0<9<1 

(complex interpolation).   These spaces are L2 type Sobolev spaces which have a 
special structure near the characteristic set of R.   It is easier to understand these 
spaces in the constant coefficient case. Then the above definitions are equivalent to 

^ = H(i+i£ir(i+^)e«GL2} 
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One can see that the index s corresponds to classical derivatives, while the index 
8 corresponds to "derivatives" away from the characteristic set of R. Such spaces 
have been investigated in detail in [8]. By interpolation one can easily prove that 
they have some good properties such as microlocalization and the expected mapping 
properties for pseudodifferential operators and R: 

(3.2) OPSm : Xs'6 -> Xs-m'6 

(3.3) R : Xs'e -» Xs-1'6-1 

On a bounded open set T we define the Xs'9 space in the standard way, as the 
restriction to F of Xs'6 functions. 

Remark 3.1. If the coefficients of R are only C1 then the Xs'6 spaces are well-defined 
and have the above properties only for \s\ < 1, \s — 0\ < 1. This is exactly the range 
which can be obtained by interpolation from the spaces X1,1, X0'1, H1 and their duals. 

Then our main result is 

Theorem 3.1. Suppose that P has C1 coefficients and that the boundary du is of class 
C2. Assume that a suitable set of geometric assumptions (see Remark 1.1) is fulfilled. 
Then the F norm is equivalent to the X1/2'1/2 norm. 

Note that X0-0 = L2 and 

X1'1 = {weH1\  Rwe L2} 

Hence, if we interpret R as a selfadjoint operator in L2 then the space X1/2'1/2 can 
be locally characterized as 

xl/2,l/2 = #1/2 n p^l/2) 

This result leads to the following optimal choices for the observability and control- 
lability problems: 

Corollary 3.1. Suppose that P has C1 coefficients and that the boundary 80, is of 
class C2. Then the Fq norm is equivalent to the X9-1/2'1/2 norm and the optimal 
space of controls Gs is Xs~xl2~xl2, 0 < s, q < 1. // both the coefficients of P and the 
boundary are smooth then the same result holds for all real s, q. 

Before we prove the theorem, let us make one important observation. The F norm, 
as we have defined it, applies only to traces of solutions to the Neuman problem, which 
is not a dense set in any Sobolev space. Hence, there is definitely more than one norm 
say, on smooth functions, which extends F. A striking example of that is given by 
the following version of the above theorem: 

Theorem 3.2. Suppose that P has C1 coefficients and that the boundary dfl is of 
class C2. Assume that a suitable set of geometric assumptions is fulfilled. Then the 
F norm is equivalent to the H2/3 n X1/2,1/2 norm. 
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The X1/2'1/2 and H2/3 n X1/2,1/2 norms are certainly not equivalent in general. 
However, it turns out that they are equivalent on the function space where F is 
defined. 

Proof. We need to prove the following two estimates 

(3.4) |t»o|i + Mo < CMXI/2,I/2(D 

(3.5) K|l  +  MO   >  c|w|ff2/3nXl/2,l/2(9fix[0,T]) 

The second one is a trace regularity result which was proved in [9]. The assumptions 
in [9] are that the coefficients are sufficiently smooth. It now appears that the same 
result holds even for C1 coefficients; however, this will be proved elsewhere. 

To give a complete proof to (3.4) we would need to redo the appropriate observabil- 
ity estimates for various sets of geometric conditions (see e.g. [1],[6]). Fortunately, 
in all these cases the boundary traces appear in the same way. The common compu- 
tation done in all these works is local, near the observed part of the boundary I\ It 
goes like this: 

One starts with a quadratic form of the form (Pu, Qu), where Q is of order 1 and 
is either a differential operator or an operator of the form 

Q = Q0Dn + Qi 

where Qo, Qi are tangential pseudodifferential operators of order 0, respectively 1, 
with purely imaginary symbol. The main step is then to compute by integration by 
parts (commuting) 

2Re(Pv, Qv) = (Pv, Qv) + {Qv, Pv) = A(v, v) + B(v, v) 

where A is an second order interior quadratic form and B is a second order boundary 
quadratic form. A is then used to estimate the H1 interior norm of v, and B is 
bounded by 

B(v,v) <c\v\2H1{r) 

Our aim, therefore, is to refine this to 

B(v,v) < c\v]2
xl/2,i/2 

To do that, we need to determine what is B. It is easier to do that in local coordinates 
where (3:1) holds. Then 

P = D2
n-R,   Q = Q0Dn + Q! 

When we integrate by parts to commute P and Q we obtain 

2Re(Pv, Qv) = interior terms + (Dnv, iQiv)d + (Dnv, iQ0Dnv)d + {iQ0v, Rv)d 

Recalling the boundary condition Dnv = 0 it follows that 

B(v,v) = {iQ0v,Rv)e 

By (3.2), (3.3) this can be bounded by 

\B(v,v)\ < c\Rv\x-i/2,-i/2\Qov\xi/2,i/2 < c\v\xi/2,i/2 

This concludes the proof. Note that the above argument requires only C1 regularity 
of the coefficients of P.   D 
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ABSTRACT. We consider an initial and boundary value problem the one dimensional wave 
equation with damping concentrated at an interior point. Our main results assert that the 
decay rate is uniform for regular initial data and give lower estimates of the decay rate. An 
essential intermediate step is the description of the spectrum of the associate dissipative 
operator. 
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1. Introduction and statement of the main results 

The main goal of the present paper is to study the asymptotic behaviour of solutions 
for the following initial and boundary value problem: 

d2u 
(1.1) u"(x,t)-—(x,t)+u'{a,t)6a = 0, Vie (0,1), Vie(0,oo) 

(1.2) u(0,t)=u(l,t)=0,Vte(0,oo) 

(1.3) u(x, 0) = w°(i), u'(x, 0) = u\x), Vi e (0,1), 

where 6a is the Dirac mass concentrated in the point a e (0,1) and by u', u" we 
denoted the time derivatives of u. Equations (1.1)—(1.3) are dissipative since 

(1.4)                                           E'( t) = -\u'(a, t)\\ 

where E = E(t) is the energy 

l rl 

\u'(x,t)\2 + 
du,     , 

2" 

dx. 

The main known results concerning the asymptotic behaviour of solutions of (1.1)- 
(1.3) can be summarized as follows: 

Theorem 1.1. 1. For any a e (0,1) the problem (\.\)-(\.Z) admits a unique solution 
u satisfying 

u e C([0, co), 1^(0,1)) n Cx([0, oo), L2(0,1)). 

Preceding Page Blank 
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2. The solution u of fl.lj-fl.3j has the decay property 

(1.5) lim(\\u(t)\\Him + ||u'(t)||L2(o,i)) = 0. 

if and only if 

(1.6) ae(0,l)n(K-Q). 

3. For any a satisfying (1.6) the decay of u to zero is not uniform in the energy 
space. More precisely, for any function ip : [0, oo) —> M. with limt^oo ip(t) = 0 there 
exists a sequence (tn), £„ —> oo and a solution u^ of (\.\)-(13) such that 

(1.7) '^(mwimllik(0,1)Xtf(0,1) *^' Vn* L 
IIW(0),uk(0)}||ffi(0,l)xL2(0,l) 

The results in Theorem 1.1 were essentially proved in [2] and [7]. However, for the 
sake of completeness we shall sketch the proof in section 2. 

In the present paper we shall prove that if we assume some additional smoothness of 
the initial data we can achieve a definite rate of decay for the solutions of (1.1)—(1.3). 
Moreover we shall show that the energy decays at most as a negative power of time. 
In order to state the precise result we shall consider a subspace of HQ(0, 1) x L2(0,1) 
denned by 

(1.8) V(A) = 
HI I Oil 

= {(«, v) e [^(0,1)]2|U e H\0, a) n H\a, 1), ^(a+) - ^(a-) = v(a)}, 

endowed with the norm 

(1-9) II(W,I>)III>(.A) = IMIjho.a) + HwllW,i) + IMIiffW)- 

Our first result on the uniform decay of solutions of (1.1)—(1.3) is 

Proposition 1.1. For any a satisfying (1-6) there exists a function ha : [0, oo) —> M. 
with lim ha(t) = 0, such that the solution u of fl.lj-fl.3j satisfies 

t—*oo 

(1.10) \\{u{t),u'{t)}\\HimxL2m < ha{t)\\(u°,ul)\\v{A), 

VfuV1) € X>(„4), Vi>0. 

Our main result shows that for any irrational a the function ha in Proposition 1.1 
tends to zero at most as \. More precisely we have 

Theorem 1.2. For any a satisfying (1.6) there exists a sequence t„ —> oo and a 
sequence (un) of solution of fl.l^-fl.2^ such that 

(1.11) hm y/tn [TT 7-7 -r-rfij  = C G (0, CO). 
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Moreover for any 6 > 0 there exists a constant a satisfying fl.6j such that 

. . ..        lf,\\{Un(tn),u'n{tn)}\\Hi{0il)xL2m 
(L12) ^*»      IIK(o)x(o)}|M       > °' 
/or some un and t„ as above. 

The plan of this paper is as follows: in the second section we prove some preliminary 
results including Theorem 1.1; in the third section we prove the main results; we end 
up with a section devoted to further comments and other related questions. 

2. Wellposedness and strong stabilization results 

We shall first study the wellposedness of (1.1)-(1.3) by using the theory of semi- 
groups. With V(A) defined by (1.8) and X = H%(0,1) x L2(0,1) we consider the 
operator A : V(A) -> X defined by 

The wellposedness theorem for (1.1)-(1.3) will be a simple consequence of the follow- 
ing result: 

Lemma 2.1. The space V(A) is dense in X and -A is the generator of a continuous 
semigroup of contractions in X. 

Proof. The proof of the density of V{A) in X is a simple exercise so we shall skip it. 
If we suppose that X is endowed with the scalar product 

a simple calculation shows that 

so A is monotone. In order to prove that -A generates a semigroup of linear con- 

tractions on X it suffices to show that .A is onto, i.e. A(D(A)) = X. Let LI G X 

and consider the equation 

M * (:)-(£ 
which can be written as 
(2.3) v = -feH1

0(0,l), 

(2.4) -^ + v(a)8a = heL\0,l). 

From (2.3), (2.4) and a simple elliptic regularity result it follows that equation (2.2) 

admits a unique solution I U) G T>(A), so A is onto. D 
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In order to study the asymptotic behaviour of the solutions of (1.1)—(1.3) we shall 
need the following compactness result. 

Lemma 2.2. The space T>(A) is compactly embedded in X and the operator A-1 is 
compact from X into X. 

Proof. We first notice that A"1 is a linear continuous isomorphism from X onto 
V(A) and from L2(fl) x H~1(Q,) onto X. It suffices then to use the fact that X is 
compactly embedded in L2(Q) x H~l(Q,). D 

Proof of Theorem 1.1. In order to prove the first assertion it suffices to notice that 
(1.1)—(1.3) can be written 

and to apply Lemma 2.1. 
In order to prove (1.5) consider the problem 

(2.5) y/>-JjL = 0i in(0,l)x(0,oo) 

(2.6) w(0, t) = w{l, t) = 0, Vi G (0, oo), 

(2.7) w'{a,t) = 0, Vie(0,oo). 

A simple Fourier expansion of w combined with the independence of complex expo- 
nentials show that the only function w satisfying (2.5)-(2.7) is w = 0. By applying 
a version of the invariance principle of LaSalle (cf.[3] and [4]) we obtain now that u 
satisfies (1.5). 

We still have to prove the third assertion of Theorem (1.1). We first notice that 
if a is rational then A admits purely imaginary eigenvalues. If a is irrational then 
it can be approached by a sequence of rationals and one can show (see Lemma 3.1 
below for details) that there exists a sequence [in of eigenvalues of A such that 

(2.8) 1Ze/j,n —> 0, Im \xn —> oo. 

Denote now by S(t) the semigroup generated by A and by C(X, X) the space of 
linear operators from X into X. Relation (2.8) implies the estimate 

||S(t)|| <Me~wt, Vi>0, 

is false for any w, M > 0. It suffices now to apply a result from [9] to obtain assertion 
3 of Theorem 1.1. 

3. Decay estimates 

In this section we shall prove Proposition 1.1 and Theorem 1.2. 

Proof of Proposition 1.1.   It suffices to show that 

(3-1) lim\\S(t)\\c(v(A),x)=0, 

where S(t) is the semigroup generated by A and £(T>(A),X) is the space of linear 
bounded operators from V(A) into X. In this case estimate (1.10) holds true with 
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ha(t) = \\S(t)\\c(p(.A),x)- Let us suppose that (3.1) is false, i.e. that there exists e > 0, 
tn —> oo and (Un) C T>(A), \\Un\\v^) = 1 sucn that 

(3.2) \\S(tn)Un\\x > e, Vn > 1. 

As by Lemma 2.2 V(A) is compactly embedded in X there exists a subsequence (Unk) 
of ([/„) and U G X, 17 ^ 0 such that 

(3.3) pm\\Unk-U\\x = 0. 
k—>oo 

As 5(i) is a semigroup of contractions relation above and (3.3) imply that 

(3.4) lim \\S(tnk)Unk - S(tnk)U\\x = 0. 
k—>oo 

Prom (3.2) and (3.4) we obtain that 

\\S(tnk)U\\x > e-, 

for k large enough, which obviously contradicts (1.5). D 

An essential intermediate step in the proof of Theorem 1.2 is the study of the 
eigenvalues and of the eigenvectors of the operator A : V(A) —> HQ(0, 1) x L2(0,1), 
where V(A) is defined by (1.8) and A is defined by (2.1). The eigenvectors and 
eigenvalues of A are characterized by the following result: 

Lemma 3.1. If a G (0,1), a g" Q then a complex number A is an eigenvalue of A if 
and only if X satisfies the equation 

(3.5) 3 - e2A - e2aX - e
2{l'a)x = 0. 

All the eigenvalues of A are simple and the eigenvector I  ,      corresponding to the 

eigenvalue —X is given by 

-— —, 0<a;<a, 
$i-ifZ e-A(*-i) . M*) = -^A(^). 

eA«-i) _ e-A(€-D '   a<x<1- 

Proof. A simple calculation shows that relation 

holds true if and only if 

(3.7) Mx) = -W\(z)> 
and 

(3.8) "^(x) + A
^

A(X)
 
= °' X G (°'ß) U (a'1)j 

(3.9) <t>x(a+) = ^A(O-) = (/)A(a), 
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(3.10) fM-£(->--*»(.). 
(3.11) <M0) = fo(l) = 0. 

If we suppose that <ßx{a) = 0 and we use that a <£ Q relations (3.8)-(3.11) imply that 
4>x{x) = 0, Vx € (0,1). This is why we shall admit that <f>x(a) = 1. From (3.8), (3.9), 
(3.11) we can then obtain that (f>x,ipx satisfy (3.6). Condition (3.10) (with <f>(a) = 1) 
implies now that A satisfies (3.5). □ 

We can give the main proof of this section. 
Proof of Theorem 1.2.   Let us make the notation 

G(a,X)=3-e2X-e2aX-e2^\ 

with a satisfying (1.6) We first notice that the first assertion of Theorem 1.2 follows 
from the existence of a sequence (zn) C C such that zn is an eigenvalue of A and 

0 < TZezn < -. T7T, \ImzJ —> oo. In this case the sequence of solutions of (1.1)- 
\Xmzn\2 

(1.2) with initial data {<k„(a:),0} satisfies (1.11) with tn = \lmzn\2. By Lemma 3.1 
a sequence (zn) satisfies conditions above if and only if 

(3.12) Zn = Xn + iVn,   Vn ~> OO,   0 < Xn < -j,   G(o, Zn) = 0. 
Vn 

In order to prove the existence of a sequence (zn) satisfying (3.12) we first notice 
that by Theorem 5 in [1] there exist two sequences (pn), (qn) C Z such that 

(3.13) 
Pn 5"2 

< —5-, Vn >1, qn-> 00. 
Tn 

By Rouche's theorem (cf. [10, p. 243]) it suffices to prove the existence of a constant 
K > 0 such that 

(3.14) 

dG 
G(a, A) - -öT-(a, 9n7")(A - qnm) < 

< 
dG 

(a,gn7ri)(A - qniri] ,   if |A — qnni\ = 
K 

Qn 

We shall first estimate the left hand side of (3.14) by writing the Taylor expansion 

(3.15) 

dG 
G(a, A) - —(o, qniri)(X - qnni) 

1 BmG 
= G(a, q„iri) + J2 Z7Tl^T^r(a. Qn^)(X - qn^i)m- 

m>1 m\ 8Xm 

Concerning the first term in the right hand side of (3.15) a simple calculation gives 

G(a, qnm) = 2 — e v    «" >v     -e"»    ^ 

= 4 sin2 a  ) qnir 
q 
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; (3.13) relation above implies the existence of nx > 0 such that By using 

(3.16) i^riw'vi - go ' 

! infinite sum in the right hand side of (3.15). We can easily 

4TT
2 

\G(a,qnni)\ < -^, Vn>nv 

We shall now estimate the 
check that 

^       ex 
which implies that 

am/1 
V^(a, A) = -2m[e2A + ame2aX + (1 - a)me2^\ Vm > 1, 

dmG 

d\m (a, qniri) < 3 • 2m, Vm > 1. 

If | A — qniri\ = -z inequality above implies the existence of n2 > 0 such that 
Qn 

(3.18) 

1 dmG 

m>2 '"■■ UA 

™        IK ?>K <3(e^-f -D<^,Vn>n, 

By combining (3.15), (3.16) and (3.18) we obtain 

dG 
(3.19) G(a, A) - ^T-(O, qnm){\ - qnni) 

. ..        A 
Vn > max(ni,n2), |A — qnm\ = -j. 

On the other hand from (3.17) it follows that 

4T^     3K 
-5g2+4gf 

K 

— {a,qnm) = -2 l + ae2(«-£rK« + (l_a)e2( ̂ -a)g„7ri 

which implies that 

dG. 
>2<h + 2cos Vn  , 

qn 

Prom relation above and (3.13) we obtain the existence of n3 > 0 such that 

(3.20) (a,qnm)(\-qniri) 
2K 

In 

dG 

Vn > n3, |A - qnm\ = -j. 

Finally by combining (3.19) and (3.20) we obtain that (3.14) holds true for all K > 
n£, provided that n is large enough, so we obtain the first assertion of Theorem 1.2. 
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Let us now suppose that S > 0. According to [14] we can find a € (0,1) which 
is transcendental and such that there exist two sequences (pn), (qn) C Z with (qn) 
strictly increasing such that 

(3.21) a_JL<        Vn>l. 

By using (3.21) and the estimates already proved in the first part of this proof one 
can easily show that the second assertion of 1.2 also holds true. D 

4. Comments and related questions 

The results in this paper can be generalized to the case of n-space dimensions, for 
the following problem: 

(4.1) u" -Au + g(u')67 = 0, in ft x (0, oo) 

(4.2) u = 0, on T x (0, oo) 

(4.3) u(x, 0) = u°(x), u'(x, 0) = v}(x), in ft, 

where: 
(a) ft is an open bounded subset of Kn with regular boundary I\ 
(b) 7 = duj, where u C u) C ft is an open set with regular boundary. 
(c) 57 is the Dirac mass concentrated on 7 and the function g : R —> M is supposed 

to be continuous and strictly monotone, with g(0) = 0. 
The two dimensional version of (4.1)-(4.3) was treated in [8] where it was proved 
that the solutions decay to zero for almost all UJ C ft. In the same paper it was 
proved that, in the one dimensional case, there exist a e (0,1) such that the solution 

of (1.1)—(1.3) goes to zero like J-. 

A question related to the problem studied in this paper is the stabilization of elastic 
plates by the use of piezoelectric actuators (see [5] for appropriate models and [11], 
[12], [13] for the associated control problems). In this case new difficulties arise as 
the control function is scalar valued, so one may hope that strong stabilization holds 
only in the case of simple eigenvalues. 

In general, the methods used in this paper apply for a large class of equations of 
the form u" + Au + g(u')6^ = 0 including the plate equation with various boundary 
conditions. 
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ABSTRACT. In this paper we consider distributed control of the system described by the 
generalized Boussinesq equation 

Utt = uxx - (o(w) + uxx)xx + f. 

on the periodic domain S, the unit circle in the plane. 
In the case of local control, if the control / is allowed to act on the whole domain S, it 

is shown that the system is globally exactly controllable. In the case of local control where 
the control / is only allowed to act on a sub-domain of S, we show that the same result 
holds if the initial and terminal states have "small amplitude" in a certain sense. 
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1. Introduction 

In the present work we consider distributed control of a class of equations which 
may be described as being of generalized Boussinesq type. They have the general 
form 

(1.1) utt ~ uxx = {a(u) - uxx)xx + f 

in which u = u(x,t), x,t € R and the subscripts denote the corresponding partial 
derivatives, a : R —> R is a smooth function with a(0) = 0. The equation (1.1) is 
a perturbation of the linear wave equation which takes into account effects of weak 
nonlinearity and dispersion, and appears in the theory of nonlinear strings. 

The classical Boussinesq equation is of the form 
3 

(1.2) utt - uxx + -{u2)xx + buxxxx = 0, 

and was derived by Boussinesq [2] in 1872 as a model for the propagation of small 
amplitude, long waves on the surface of water. It possesses special, traveling-wave 
solutions called solitary waves. Historically, Boussinesq's theory [2] was the first 
to give a satisfactory, scientific explanation of the phenomenon of solitary waves 
described by Scott-Russell thirty years earlier. Depending on whether the coefficient 
b in the equation (1.2) is positive or negative, the equation (1.1) is called the "good" 
Boussinesq equation or the "bad" Boussinesq equation. The "bad" version is used 
to describe a two-dimensional flow of a body of water over a flat bottom with air 

Preceding Page Blank 
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above the water, assuming that the water waves have small amplitudes and the 
water is shallow. It also appeared in a posterior study of the Fermi-Pasta-Ulam (FPU) 
problem, which was performed to show that the finiteness of the thermal conductivity 
of an anharmonic lattice was related to nonlinear forces in the springs. However, the 
"bad" Boussinesq equation is notorious for its initial value problem (IVP) being not 
well-posed even locally (in time). Of the "bad" Boussinesq equation only solutions of 
soliton type, which can be found using the inverse scattering method, are known. For 
this reason, we only consider a generalized version of the "good" Boussinesq equation 
(1.1). 

Our main concern is the study of equation (1.1) from a control point of view. In 
particular, we consider the equation posed on a periodic domain S, the unit circle in 
the complex plane 

(1.3) utt - uxx = (a(u) - uxx)xx + f,    xG S, te R 

with the forcing function f = f(x,t) as a control input. The goal is to influence the 
system by choosing an appropriate input /. 

The control theory of Boussinesq-type equations was initiated by Liu and Russell 
[6], [7] and [8]. Both distributed control and boundary control of the Boussinesq 
equation have been considered. Some dissipative mechanism is introduced into the 
systems through appropriate feedback control laws. They showed that the small 
amplitude solutions of the resulting closed loop system are then exponentially stable. 

In this paper we consider the exact control problem: choose an appropriate control 
input f(x,t) to guide the system described by (1.3), during time interval [0,T], from 
a given initial state to another preassigned terminal state in an appropriate function 
space of system states. 

Note that for an appropriately smooth solution u(x, t) of the unforced equation 
(f(x, t) = 0) it is easy to see that any smooth solution u satisfies 

d   f 
— / ut{x,t)dx = 0 
at Js 

for any t € R. Therefore 

/ ut(x,t) = / ut(x,0)dx 

and 
/ u(x,t) = / u(x, 0)dx +1 / ut(x,0)dx 

JS JS Jo 

for any t G R. Usually one chooses the initial value ut(x, 0) with jsiit(x, 0)dx = 0 (cf. 
[1]) so that both Jsut(x,t)dx and Jsu(x,t)dx are conserved for the unforced system. 
In order to keep these quantities conserved while conducting control we require that 
the control input / in system (1.3) satisfies 

(1.4) J f(x,t)dx 0,    Vi e R. 

A more interesting case is obtained if some further a priori restrictions are imposed 
on the applied control f(x,t). Let us suppose that g(x) be a smooth function defined 
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on S with its support contained in S satisfying 

[g] := j g(x) dx = 

where [g] denotes the mean value of the function g over the circle S. We restrict our 
attention to a control of the form 

(1.5) f(x, t) = Gh := g{x) (h{x, t) - Jg g{y)h(y, t)dj) . 

Thus h(x,t) may be considered as a new control input. It is easy to check that 

0 //(M) Js 

with / given by (1.5); therefore the restriction (1.4) is satisfied. Depending on the 
support of the function g in the domain S, there are two different control situations. 
If the support of g is the whole domain S then the control acts on the whole domain 
and we refer to it as global control. If the support of the function g is a proper 
subset of S, the control acts only on a sub-domain and we refer to it as local control. 
Obviously we have more control power in the global control situation than in the 
local control case. On the other hand, the local control situation includes more cases 
of practical interests and is therefore more relevant in general. 

Now we describe the main results of this paper. Let HS(S) (s > 0) be the space 
of all functions of the form 

oo 

v(x) = J2vke
ikx 

—oo 

such that 

f oo 1 1/2 

(i.6) {£kl2(i + |fc|)2sj   <+oo. 

The left hand side of (1.6) is a Hilbert norm for HS(S); we denote it by \\v\\s. 
For the control problem just introduced the exact control problem consists in using 

the indicated control function to guide the system, during [0, T], between a given pair 
of initial states u(x, 0) = <j>o{x) and ut(x, 0) = tpo(x) and agiven pair of terminal states 
u(x,T) = <J>T(X) and ut(x,T) = IPT(X), in an appropriate function space of system 
states, necessarily, in view of the conserving control actions under consideration, such 
that 

(1.7) / ipo(x)dx = / ipT(x)dx = 0, / <f>o(x)dx = / <j)T(x)dx. 
Js                  Js                              Js Js 

In the global control case, the control h acts on the whole domain 'S and we have 
the following strong controllability result. 

Theorem 1.1. Let T > 0 and s > 0 be given and assume that the function g in (1-5) 
satisfies 

(1.8) \g(x)\>ß>0,        VxeS 
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Then for any (<j>0,ip0), {(/>T,II>T) •£ HS+2(S) x H*(S) satisfying (1.7) there exists a 
control function h G L2(Q,T;HS(S) such that the equation 

Utt - uxx = (a(u) - uxx)xx + Gh 

has a solutionu e C([0,T};Hs+2{S)) nC^^Tj-H^S)) satisfying 

u{x, 0) = (f>o{x),        ut(x, 0) = tpo(x), 

u(x, T) = (j)T{x),        ut(x, T) = ipr(x). 

In other words, we have "global" exact controllability in the global control case. 

In the local control case, the support of the function g may be a very small part of 
the domain 'S; thus our control power is quite limited. In this situation, we have the 
following "local" exact controllability result. 

Theorem 1.2. Let T > 0 and s > 0 be given. Then there exists a S > 0 such that for 
any (cfo^o), (</>T,</>T) G HS+2(S) x H'{S) satisfying (1.7) and 

\\M\s+2 + \\<fr\\,+2 < 5, IM» + IIV'TIIS < s, 

there exists a control function h € L2(0, T; HS(S) such that the equation 

utt ~ Uxx = (a(u) - uxx)xx + Gh 

has a solutionu 6 C([0, T]; HS+2{S)) n ^([O, T];HS(S)) satisfying 

u{x, 0) = (/>0(x),        ut{x, 0) = ip0(x), 

u(x, T) = <f>r{x),        ut(x, T) = fa(x). 

The paper is organized as follows. In section 2, we consider well-posedness of 
the initial value problem of the forced generalized Boussinesq equation posed on the 
periodic domain S: 

!Utt — uxx = (a(u) - uxx)xx + f,    x € S, t e R 

u(x, .0) = 4>{x),    ut(x, 0) = ip(x) 

As it is known this is equivalent to considering periodic solutions of the equation posed 
on R. The local well-posedness of tMs problem could be established either by Kato's 
semigroup approach (see Bona and Sack [1]) or by Bona and Smith's regularization 
approach (see Liu and Russell [7]). But in this paper we provide a direct and simpler 
approach with the contraction principle. The advantage of this approach is that one 
not only obtains the well-posedness of the problem but is also able to show that the 
solution depends analytically on its initial data and the forcing term. It should be 
pointed out that one only expects a local well-posedness result for the IVP (1.9). 
Some solutions of the IVP (1.9) may blow up in finite time even though their initial 
data and the forcing term are smooth (see [5]). In section 3, we conduct a spectral 
analysis of the operator 

0        1 
d2-d4   0 

defined in the space Xs = HS+2(S) x HS(S) for s > 0. We show that the operator A 
is a discrete spectral operator and its eigenvectors form a Riesz basis of the space Xs. 
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The result established in this section is the basis to obtain our main exact control- 
lability results for the generalized Boussinesq equation (1.1). The proof of our main 
results of this paper, Theorem 1 and Theorem 2, are provided in section 4. As in our 
earlier joint paper with Russell [10] which dealt with the same control problem for 
the Korteweg-de Vries equation, we consider first a linear system associated with the 
nonlinear system (1.1): 

{Uu - uxx + uxxxx = Gh,    x G S, t € R 

u(x, 0) = 4>{x),    ut(x, 0) = ip(x) 

We will show that the system is exactly controllable in the space HS+2(S) x HS(S) for 
any s > 0. Moreover, we show that there exists a bounded linear operator KT from 
the initial/terminal state pair (^o.V'o), (<PT,^T), each in the space HS+2(S) x Ha(S), 
to the corresponding control h in the space L2([Q,T];H"(S)). Then the proofs of 
Theorem 1.1 and Theorem 1.2 follow from the same argument used in [10]. 

2. Well-posedness 

In this section we establish the well-posedness of the initial value problem of the 
forcing general Boussinesq equation on a periodic domain S, 

{utt = uxx - (a(u) + uxx)xx + f       x€ S, te R, 

u(x, 0) = </>(x),        ut(x, 0) = ip(x), 

via the contraction principle approach. 

Theorem 2.1. Let s > 0 and T > 0 be given. Then for any <f> G HS+2(S), ip G HS(S) 
and f G L1(0,T;.£P(S')), there exists a T* > 0, depending only on ||0||s+2, H^ll and 
||/IUi(o.r;ff»(S)), such that the IVP (21) has a unique solution u G C([0, T*]; HS+2(S)) 
with ut G C([0,T*];Hs(S)). In addition, the solution depends continuously on the 
initial data (/>, ip and the forcing term f in the respective spaces. 

Before we present the proof of the theorem, we rewrite (2.1) as the following equiv- 
alent first order evolution equation 

(2.2) — u = Au + F(u) + g,    u(0) = u0 

where 

(2.3) «=(;),   A=(dl°_dti 

and 

<2-4>     F(a)=((-(V)•  *=(/)'  "o=u 
For any s > 0 and T > 0, let Xs denote the Hilbert space 

Xs = HS+2(S) x HS(S) 
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equipped with the norm 

Nix. = (KII2 + K*II* + NQ 
1/2 

for any u = I £ X«. In addition, let 

YTtS = C([0,T];Xs). 

It is easy to see that the operator A is a linear operator from Xs to Xs with 
V(A) = Hs+i{S) x H"(S). Besides, the adjoint operator of A 

A* = -A. 

The operator A generates an isomorphic group W(t) on the space Xs for any s > 0 
and the standard semigroup theory gives us the following estimates. 

Proposition 2.1. Let T > 0 and s > 0 be given. There exists a constant c > 0 such 
that 

(2.5) sup  \\W(t)u\\Xs < \\u\\Xs 
te(o,T) 

for any u € Xs and 

(2.6) sup  || f W{t - T)/(r)dr|U. < c||/j|Li(o,iyr.) 
te(o,T)   Jo 

foranyf£L\0,T;X2). 

Using the notations we just introduced, Theorem 2.1 can be restated as follows: 

Theorem 2.1'. Let s > 0 and T > 0 be given. Then for any u0 G Xs and g G 
L1(0,T;Xs)) there exists a T* > 0 depending only on \\u0\\xs and ||<?||LI(O,T;XS) such 
that the IVP (1.2) has a unique solution u G YT*,S o,nd the corresponding solution 
map: (w0,/) G Xs x L

1(0,T;Xs) —> u G ir*,s ^s continuous. 

Proof of Theorem 2.1'. Using the notation of the semigroup W(i) we may write 
(2.2) in its integral form 

(2.7) u(t) = W(t)u0 + J* W(t - T)(F(U) + g)(r)dT 

It suggests us to consider the map T defined on the space C[0,T;Xs], for given 
w0 G Xs and g G L^Q, 1; Xs), by 

T(u) = W(t)u0 + J W{t- T)(F(U) + g){T)dr 

for any u G Xs. For M > 0 and T > 0, let ^M be a bounded subset of the space 
C[0,T;X.]: 

ST,M = \U& C[0,T;XJ;   sup  ||M||XS <M\. 
[ te(0,T) ) 
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Applying (2.5)-(2.6) yields that for any T > 0 there exists a constant c> 0 such that 

sup  ||u(t)||x. < c\\u0\\x3+c[ (\\F(u\\Xs + \\g\\Xs)dT. 
t€(0,T) J0 

Note that 
\\F(ü)\\x3 = \\(a(u))xx\\s,        \\g(;t)\\x. = \\g(;t)\\s, 

for any u G C[0, T; Xs] and 

||(a(w))xx||S     <     ||a"(u)Uslls + llfl'(u)u:ralls 

<   ß(\\u\\s+2)\\u\\s+2 < ß(Ü\\Xs)\\u\\xs 

where /?(•) is a continuous monotone increasing function only depending on a. One 
has that 

sup  ||r(Ö)||x.   <   c(||w0||xs + ||/IUi(o,TÄ)) + cT/?(sup  ||Ä(i))||x.  sup  ||«(t)||x.- 
te(0,T) *G(0,T) t£(0,T) 

Choose M and T* such that 

(2.8) M = 2c(||iZb||x. + ||/I|LI(O,Tä)),    cT*ß(2M) < 1/2. 

Then 
sup   \\T(u)\\x, < Af/2 + cT*ß{M)M < M 

*6(0,T») 

for any u G ST*,M- In addition, for any u, u G SM, 

T(u) - T(v) = f W(t - T) (F{U) - F{v)) dr 
Jo 

and 

F{u) - F(v) = (f a!{u + \(v - u))d\(u - vf 

Thus 

sup   \\T(u) - F(v)\\Xs   <   cT*ß( sup   ||u + tT||xs) sup  ||u-i7||x, 
te(o,T*) *e(o,T«) te(o,T) 

< cT*ß{2M)   sup   \\u-v\\Xs 
te(o,T*) 

< sup   \\u — v\\x,/2. 
te(o,T*) 

So F is a contraction in ST*,M- Its fixed point is the desired solution. D 

As an advantage of this contraction principle approach, one can show that the solu- 
tion map is not only continuous but also infinitely many times Prechet differentiable 
if o is a C°° function and is analytic if a is a polynomial. 

Corollary 2.1. // the function a is C°° smooth, then the solution map: 

(u0, f) G Xs x ^(0,T; HS(S)) -» YT,S 

is C°° smooth, i.e., it has any order of Frechet derivatives.  Furthermore, if a is a 
polynomial, then the solution map is analytic. 

Proof,   see [11]. 
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3. Spectral analysis 

In this section we conduct a spectral analysis of the operator A defined by (2.3). 
The result obtained in this analysis will be the basis to transfer the exact control- 
lability problem of the associated linear system (1.10) to a corresponding moment 
problem. 

Let us define 

Eifi =     0     ,        E2fi =     x 

I    I eikx 
-El.fc = 75 \      n      I > E2ik = I      ikx 

and 

tf\   0   )'       ^'K ~ \ e' 

for k = ±1, ±2, An easy computation leads to 

/ o k2 

A(Eiik, E2ik) = (Eitk, E2tk)T,K   with    Ek = I   _,^2     ^    ^ 

The matrix T,k has the eigenvalues 

Afc,i = i^2(fc2 + 1) 
(3.1) 

Afc,2 = -iJmW+T) 

with the corresponding eigenvectors 

(3-2) 4,i = (   A^      , 4,2 =      A*^ 
\   fc2   / V   A

2 

for fc = ±1,±2, In addition, A0,i = A0,2 = 0 is also an eigenvalue with the 
corresponding eigenvector 

-    -    (° eo,i = e0,2 = 

Thus 

A(Eitk,E2>k)(ekii,eki2)   =   (Eitk,E2ik)Y,k(ek}i,eki2) 

=   (Ai,fc(£q,fc, E2yk)ekii, \k,2{Eiik, E2>k)ekt2). 

So Afc,! and A^ are eigenvalues of the operator A with the corresponding eigenvectors 

Vk,i = (Ei,k,E2:k)ek<i,        ffk,2 = (Eiik,E2<k)eki2. 

for fc = ±1, ±2, In addition, A0 = 0 is the eigenvalue of the operator A with the 
corresponding eigenvector 

' 0 
Vo~ I  1 

Note that 

Mk = (eM,efc,2) -> (  ^   _{ 
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as k —> oo. Thus 
lim det Mk = -2i ^ 0. 

k—»oo 

Since {Elik, E2ik}, k = 0, ±1, ±2,... form an orthogonal basis for the 
[3] we know that 

{ffo,Vk,i,Vk,2, k = ±l, ±2,...} 

forms a Riesz basis for the space Xs. 

space Xs, by- 

Note that A* = -A. The spectrum of A* consists of the eigenvalues 
and 

ßk,j = AfcJ = — Afcj 

for j = 1,2 and k = ±1,±2,... with the corresponding eigenvectors 
vkj = ffkj. Furthermore, we define 

Mo = A0 = 0 

z?o = 770 and 

mk,j = MkjWx, 

and 

for j = 1,2 and k = ±1, ±2,.... Then 

{^o = »7o,    h,j,j = 1,2 and k = ±1, ±2,... } 

forms an orthonormal basis for the space Xs: 

f 1       if k = m, j = I 

(<t>kj,<i>m,i)xs = I 
[ 0       otherwise 

The above discussion can be summarized as the following theorem. 

Theorem 3.1. Let 

K= ' 
n2(n2 + l)            n = 0,l,2,..., 

/n2(n2 + l)        n = -l,-2,... 

<f>n,l = S 

and 

0n>i           n = 0,1,2,... 

4>n,2       n = -1, -2, -3,... 

<£_„,!          n = 0,1,2,... 

4>n,2 = ' 

Then 

(a) The spectrum of t 
A0 is a simple eige 
and each A„,    n = 
eigenvector </>nj, j 

he op 
nvalu 
= ±1, 
= 1,2 

. hatcp-ni2    n = -1, -2,... 

erator A consists of eigenvalues {An}^ 
e wi£ft i/ie corresponding eigenvector 4>o 
±2,... is a double eigenvalue with the 

,„00 in w/wc/i 
= 00,1 = 00,2 
zorresponding 
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(b) {(f>0, (j>nj, j = 1,2, n — ±1, ±2,... } /orms an orthonormal basis for the space 
Xs and any w G Xs has the following Fourier series expansion: 

+0O 

W = a0(f)Q +       Yl       {0in,l<t>n,\ + an,2<t>n,2) 
n=—00,7^0 

with ao =< w, (j)o >xs, and 

anii =< W, (f>n,l >Xe,      On,2 =< W, <£n,2 >XS 

for n = ±1, ±2,... 

4. Exact controllability 

In this section we prove the main results of this paper. Following the argument in 
[10] we first consider the corresponding linear control system 

!utt = uxx ~ uxxxx + tr/l X £ D,   t G K, 

u(x,0) = <j>(x),        ut{x,0)=ip(x), 

which can be written as the following abstract linear system 

f § = Ay + Bh, 
(4.2) 

[ y(o) = m 

on the space Xs where 

with h G i2(0, T; HS(S)). The solution y(t) of this system can be written as 

(4.3) y(t) = W(t)y0 + jT W(t - T)Bh(r)dT. 

Based on the spectral analysis of the operator A conducted earlier, 

y{t) = eXota0(/>o + J2 eXnt(an<pnti + a„,2</>n,2) 

(4.4) rt ,t 
+ / ex°^ß0(r)dT+Y,      eA-<*-T)(Ä»,iW^,,i+Ä.,2(r)^,,2)dT 

where a0 = (y0, <f>o)xB,    ßo = (Bh, <p0)xs and 

OtnJ = (yo, 4>nj)xs,       ßn,j = {Bh, 4>n,j)xs = (h, B*<f>nj)H'(S) 

for j = 1,2 and n = ±1, ±2,... Note that 

v //A* \Gh )'\v 

(h,Gv)H»(S)- 
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Thus 

(4.5) B*[l^j=GveH\S) 

for any ( M G Xs. 

Let 

Xa = Utio, jh) £Xs* Xa,    Js(y0)idx = Js(yr)adx,    JJS^dx = JJS^dx = oj . 

Here, (yjj denotes the j-th component of y (j = 1,2). We show that the linear 
system (4.3) is exactly controllable. In fact we show that the following stronger result 
holds which is the key for obtaining exact controllability of the nonlinear system. 

Theorem 4.1. Let T > 0 be given. There exists a bounded linear operator 

KT:  Xs^L2(0,T-Hs(S)) 

such that for any (yo,yr) & Xs, the solution of 

fit) = Ay(t) + BKT(y0, yT),    y{0) = y0 

satisfies 
V(T) = yT 

and 

\\KT(yo,yT)\\Li{0,T;H°(S)) < Pr (||j/o|lxs + ll^rll^) 

for some constant CT > 0 independent of (j/ö, VT)- 

Proof. Since the system (4.3) is time reversible we may assume, without loss of 
generality, that yT = 0. Then the exact control problem, letting t = T in (4.4) and 
y(T) = 0, consists of finding a h G L2(0, T; H8{S)) such that 

(a0 + Tßo)4>0 + Y^ eAnT(a„</>n,i + a^Ana) 
njtO 

+ £ /TeA"(T"T) {ßn,i{T)K,i + /3n,2(r)^,2) dr = 0. 

This leads to the solvability of the following moment problem 

f -e^Tan,1=^^
Tr)ßn,1(T)dr, 

a0+Tß0 = 0,    { 
{ -eA"Tan,2 = /0

Te^^)/?n,2(r)dT 

for n = ±1, ±2,... Here (<f>n,j)2 denotes the second component of 4>n,j and according 
to the previous computation 

(bke
ikx        if j = 1 

{ bke-ikx      if j = 2. 

where 0 < m < \bk\ < M for any k. 
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By denoting pk = eXkt, V = {pk | — oo < k < 00} forms a Riesz basis for its closed 
span, PT in L

2(0,T) (see [4]). We let C = {qk | - 00 < k < 00} be the unique dual 
Riesz basis for V in PT, i.e., the functions in C are the unique elements of PT such 
that 

fT   
(4.6) /   qi(t)pk(t)dt = 8kU        -00 < I, k < 00. 

We take the control h in (4.3) to have the form 

(4.7) h(x,t) = coq0{t) + J2Qi(t){ciM(<f>i,ih)+ciM(<f>i,2h) 

where the coefficients c0, Q_i and c;]2 are to be determined so that, among other things, 
the series (4.7) is appropriately convergent. Substituting (4.7) into (4.4) yields, by 
using the biorthogonality (4.6), that we have a0 = c0 < G(4>o), G(<f>0) >x„ and 

(4.8) 
fe   AnTanii=Cnii(G(^n,i)2,G(^nii)2)ff3(5)+Cn,2(Gr(^nii)2,G(^n,2)2)i^(S) 

[e   AnTanil = C„:i(G(0ni2)2,G(<?l)nii)2)ff»(5) + Cn,2(G(^n,2)2,G(<?!)ni2)2)ff»(S) 

forn = ±l,±2,... Let 

(G(^„,i)2, G(4>nil)2)H°(S)     {G{4>n,l)2G(<t>n,2)2)H>(S) 

{G{4>n,2)2> G(4>„,I)2)H°(S)     {G{(j)nfi)2G{4)n,2)2)H^S) 

A„     = 

=     ||G(<M2||S
2||G(<M2||? - \(G(<j>n,l)2,G(<t>nfl)H- (S)\ 

Note that An ^ 0 for any n since G(4>ni2)2 and G{(j>n^)2 are linearly independent. 

In addition, as n —> 00, (G((f>nii)2,G(4>n,2)H-(s) -> 0 and \\G(<f>ntj)2\\2 ~ &|, j = 1,2. 
Hence there exists a e > 0 such that 

|A„| > e 

for any n and cn,i and c„i2 are uniquely determined by (4.8). By Cramer's rule, 

(4.9) 

with 

and 

Cn,l 
A„,i 

An' 
Cn,2 = 

Ani 
e KTanti   {G((f>nA)2G(<f>nt2)2)H'(S) 

e~XnTanfl     (G^nthGi&n^H'iS) 

(G(<f>„,i)2, G(<t>nil)2)H°(s)   e"A"Tan,i 

(G(</>„)2)2, G(<pntl)2)H>(S)   e-XnTanft 

It remains to show that h defined by (4.7) and (4.9) <E L2([0,T];#'s(S). It follows 
from the same argument as in the proof of Theorem 1.1 in [10] and is therefore 
omitted here. The proof is complete. D 
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Now we turn to the nonlinear system 

!Utt ~ uxx = (a(u) - uxx)xx + Gh 

u(x, 0) = <t>(x),    ut(x, 0) = 4>(x) 

and prove the main results of this paper. 

Proof of Theorem 1.1. According to Theorem 4.1, there exists hi G L2(0, T; HS(S)) 
for which one may find u G C([0,T};HS+2(S)) n C^O,T}; HS(S)) satisfying 

u(x,0) = <f>o(x),    ut{x,0) =ipo(x), 

. u{x,T) = 0T(I),    ut(x, T) = il>r{x) 

for given (</>O,II>Q) and {4>T,^T) in the space Xs. Adding —a(u)xx to both sides of the 
above equation one obtains 

' utt - uxx - (a(u))xx + uxxxx = Ghi - a(u)xx, 

u(x, 0) = (f>Q(x),    ut(x, 0) = ip0{x), 

. u(x, T) = <j>T{x),    "»(*>T) = M*)- 

Thus it suffices to show that there exists h2 G C([0,T];Hs(S)) such that 

(Gh2)(x,t) = -{a(u))xx. 

Note that a(u)xx = a'(u)uxx + d'(u)u2
x G C([0,T];Hs(S)) since a is a smooth func- 

tion and u G C([0,T];H3+2(S)). The existence of h2 follows from exactly the same 
argument as in the proof of [10, Theorem 1.1]. The proof is complete. D 

Proof of Theorem 1.2.   We first write (4.10) as the first order evolution system 

f = Au + F(u) + Bh, 

u(0) = u0 

which can be rewritten in its equivalent integral equation form 

(4.11)       u{t) = W(t)u0 + J* W(t - r)(ß/i((r) + j W(t - T)F(Ü){T)O]T. 

We define 

w(T,u) = [T W{T - T)F(u)(j)dT. 
Jo 

According to Theorem 4.1, for given u0, UT G Xs, if one chooses 

h = KT(u0, UT + w(T, u)) 

in equation (4.11), then 

u(t) = W{t)u0 + f W{t - T)(BKT{U0,UT + u(T,ü))(T)GIT + f W{t- T)F{U){T)OIT 
JO JO 
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and u(0) = u0, U(T) = uT by virtue of the definition of the operator KT-   This 
suggests that we consider the map 

r(u) = W(t)u0 + f W(t - T)(BKT{U0,UT + w(T,u))(r)dT + [ W{t-T)F(Ü)(T)CLT. 
JO JO 

If the map F is shown to be a contraction in an appropriate space, then its fixed 
point u is a solution of (4.11) with h = KT(u0, uT + ui(T, u) and satisfies u(T) = uT. 
An argument similar to the proof of Theorem 2.1 in section 2 shows that the map T 
is a contraction in the space Xs. The only modification one needs is that instead of 
choosing a small T, one chooses a small «5 > 0 and requires 

IKolU. < 8,        \\UT\\X, < 8 
so that the map T becomes a contraction (see also [11]).   The proof is complete. 

D 
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